HDU 1492 The number of divisors(约数) about Humble Numbers 数论

The number of divisors(约数) about Humble Numbers

Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u

Description

A number whose only prime factors are 2,3,5 or 7 is called a humble number. The sequence 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 25, 27, ... shows the first 20 humble numbers.

Now given a humble number, please write a program to calculate the number of divisors about this humble number.For examle, 4 is a humble,and it have 3 divisors(1,2,4);12 have 6 divisors.

Input

The input consists of multiple test cases. Each test case consists of one humble number n,and n is in the range of 64-bits signed integer. Input is terminated by a value of zero for n.

Output

For each test case, output its divisor number, one line per case.

Sample Input

4
12
0

Sample Output

3
6
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <queue>
#include <vector>
#include <iomanip>
#include <math.h>
using namespace std;
#define FIN     freopen("input.txt","r",stdin);
#define INF     0x3f3f3f3f
#define lson    l,m,rt<<1
#define rson    m+1,r,rt<<1|1
typedef long long LL;

int main()
{
    //FIN

    LL n;
    while(~scanf("%lld",&n)&&n)
    {
        LL res=1;
        int a=1,b=1,c=1,d=1;
        while(n!=1&&n%2==0)  {a++;n/=2;}
        while(n!=1&&n%3==0)  {b++;n/=3;}
        while(n!=1&&n%5==0)  {c++;n/=5;}
        while(n!=1&&n%7==0)  {d++;n/=7;}
        res=a*b*c*d;
        printf("%lld\n",res);
    }

}

  

				
时间: 2024-12-21 00:42:33

HDU 1492 The number of divisors(约数) about Humble Numbers 数论的相关文章

HDU 1492 The number of divisors(约数) about Humble Numbers(数学题)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1492 Problem Description A number whose only prime factors are 2,3,5 or 7 is called a humble number. The sequence 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 25, 27, ... shows the firs

hdoj 1492 The number of divisors(约数) about Humble Numbers 【数论】【质因子分解 求和】

定理:一个正整数 n 可以用素因子唯一表示为 p1^r1 * p2^r2 * ... pk^rk (其中 pi 为素数) , 那么这个数的因子的个数就是,(r1+1)*(r2+1)*...*(rk+1). 理解:为什么是加1之后再相乘,因为一个数的的因子数至少为1和他自身,但因为r1,r2..可以为0,所以因子的个数为(r1+1)... 拓展一下: 定理1: 一个正整数 n 可以用素因子唯一表示为 p1^r1 * p2^r2 * ... pk^rk (其中 pi 为素数) , 那么这个数的因子的

The number of divisors(约数) about Humble Numbers

The number of divisors(约数) about Humble Numbers Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 3033    Accepted Submission(s): 1465 Problem Description A number whose only prime factors are 2,3

HDU - The number of divisors(约数) about Humble Numbers

Description A number whose only prime factors are 2,3,5 or 7 is called a humble number. The sequence 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 25, 27, ... shows the first 20 humble numbers. Now given a humble number, please write

The number of divisors(约数) about Humble Numbers--hdu1492

http://acm.hdu.edu.cn/showproblem.php?pid=1492 题目大意:  给你一个n    这个n呢  他的素因子只有2 3 5 7 这四个数   没有其他的素因子   求他的因子数   n是2的64次方 分析  :  只求出他的素因子的个数  每一个加一  相乘就行 #include<cstdio> #include<cstring> #include<stack> #include<vector> #include<

hdu-1492 The number of divisors(约数) about Humble Numbers---因子数公式

题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1492 题目大意: 给出一个数,因子只有2 3 5 7,求这个数的因子个数 解题思路: 直接求出指数即可 1 #include<iostream> 2 #include<cstdio> 3 #include<cstring> 4 #include<algorithm> 5 #include<cmath> 6 #include<queue>

Humble Numbers数论(HDU 1055)

Humble Numbers Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 18028    Accepted Submission(s): 7845 Problem Description A number whose only prime factors are 2,3,5 or 7 is called a humble numb

HDU - 1711 A - Number Sequence(kmp

HDU - 1711 A - Number Sequence Given two sequences of numbers : a[1], a[2], ...... , a[N], and b[1], b[2], ...... , b[M] (1 <= M <= 10000, 1 <= N <= 1000000). Your task is to find a number K which make a[K] = b[1], a[K + 1] = b[2], ...... , a[

HDU 4937 Lucky Number 搜索

题意: 给你一个数,求在多少种不同的进制下这个数每一位都是3.4.5.6中的一个. 思路: 搜索.枚举这个数在任意进制下的表示,判断是否合法.当数字只有3.4.5.6时,必定有无穷种. 因为数字太大,所以直接枚举必定会超时. 下面有两种剪枝的方法: 1. 先枚举最后一位的情况. 假设数字n在base进制下表示为 a[n]...a[0],即 n = a[0] + a[1]*base^1 + ... + a[n]*base^n. 则 n - a[0] = a[1]*base^1 + ... + a[