LightOJ1125 Divisible Group Sums(DP)

题目问从N个数中取出M个数,有多少种取法使它们的和能被D整除。

dp[i][j][k]表示,前i个数取出j个数模D的余数为k的方案数

我用“我为人人”的方式来转移,就从i到i+1转移,对于第i+1个数有取和不取两种选择,然后确定j和k这两个维度的情况。

另外题目说数字是32位有符号整数,所以是会出现负数的。。。模D之后加D再模D就行了。

 1 #include<cstdio>
 2 #include<cstring>
 3 using namespace std;
 4 long long dp[200][11][20];
 5 int main(){
 6     int t,n,q,a[200],d,m;
 7     scanf("%d",&t);
 8     for(int cse=1; cse<=t; ++cse){
 9         scanf("%d%d",&n,&q);
10         for(int i=0; i<n; ++i) scanf("%d",a+i);
11         printf("Case %d:\n",cse);
12         while(q--){
13             scanf("%d%d",&d,&m);
14             memset(dp,0,sizeof(dp));
15             dp[0][1][(a[0]%d+d)%d]=1;
16             dp[0][0][0]=1;
17             for(int i=0; i<n-1; ++i){
18                 for(int j=0; j<=m; ++j){
19                     for(int k=0; k<d; ++k){
20                         if(j<m) dp[i+1][j+1][((k+a[i+1])%d+d)%d]+=dp[i][j][k];
21                         dp[i+1][j][k]+=dp[i][j][k];
22                     }
23                 }
24             }
25             printf("%lld\n",dp[n-1][m][0]);
26         }
27     }
28     return 0;
29 }
时间: 2024-10-12 14:32:04

LightOJ1125 Divisible Group Sums(DP)的相关文章

LightOJ1125 Divisible Group Sums

Divisible Group Sums Given a list of N numbers you will be allowed to choose any M of them. So you can choose in NCM ways. You will have to determine how many of these chosen groups have a sum, which is divisible by D. Input Input starts with an inte

Light oj 1125 - Divisible Group Sums (dp)

题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1125 题意: 给你n个数,q次询问,每次询问问你取其中m个数是d的整数倍的方案数. 题意: dp[i][j][k] 表示前i个数, %d=j, 取了k个的方案数. ID SUBMISSION TIME PROBLEM SOURCE CPU MEMORY VERDICT 839200 2016-10-15 14:59:00 1125 - Divisible Group Sums

hdu 5623 KK&#39;s Number(dp)

问题描述 我们可爱的KK有一个有趣的数学游戏:这个游戏需要两个人,有N\left(1\leq N\leq 5*{10}^{4} \right)N(1≤N≤5∗10?4??)个数,每次KK都会先拿数.每次可以拿任意多个数,直到NN个数被拿完.每次获得的得分为取的数中的最小值,KK和对手的策略都是尽可能使得自己的得分减去对手的得分更大.在这样的情况下,最终KK的得分减去对手的得分会是多少? 输入描述 第一行一个数T\left( 1\leq T\leq 10\right)T(1≤T≤10),表示数据组

Ural 1353 Milliard Vasya&#39;s Function(DP)

题目地址:Ural 1353 定义dp[i][j],表示当前位数为i位时,各位数和为j的个数. 对于第i位数来说,总可以看成在前i-1位后面加上一个0~9,所以状态转移方程就很容易出来了: dp[i][j]=dp[i][j]+dp[i][j-1]+dp[i][j-2]+.......+dp[i][j-9]: 最后统计即可. 代码如下: #include <iostream> #include <cstdio> #include <string> #include <

HDU 4908 (杭电 BC #3 1002题)BestCoder Sequence(DP)

题目地址:HDU 4908 这个题是从m开始,分别往前DP和往后DP,如果比m大,就比前面+1,反之-1.这样的话,为0的点就可以与m这个数匹配成一个子串,然后左边和右边的相反数的也可以互相匹配成一个子串,然后互相的乘积最后再加上就行了.因为加入最终两边的互相匹配了,那就说明左右两边一定是偶数个,加上m就一定是奇数个,这奇数个的问题就不用担心了. 代码如下: #include <iostream> #include <stdio.h> #include <string.h&g

Sicily 1146:Lenny&#39;s Lucky Lotto(dp)

题意:给出N,M,问有多少个长度为N的整数序列,满足所有数都在[1,M]内,并且每一个数至少是前一个数的两倍.例如给出N=4, M=10, 则有4个长度为4的整数序列满足条件: [1, 2, 4, 8], [1, 2, 4, 9], [1, 2, 4, 10], [1, 2, 5, 10] 分析:可用动态规划解题,假设dp[i][j],代表满足以整数i为尾数,长度为j的序列的个数(其中每一个数至少是前一个数的两倍).那么对于整数i,dp[i][j] 等于所有dp[k][j-1]的和,其中k满足:

UVA542 - France &#39;98(dp)

UVA542 - France '98(dp) 题目链接 题目大意:之前题目意思还以为看懂了,其实没看明白,它已经把各个选手分在各自所在的区域里面,这就意味着第一次的PK的分组已经确定,而且冠军必须是从两个左右分区出来的胜利者才有机会pk冠军. 解题思路:那么从1-16这个大的区间内诞生出来的冠军可能是来自左边,也可能是右边,然后再左边右边的子区间递归找出冠军.f[i][l][r]表示l-r这个区间的胜利者是i的概率,那么假设i在区间的最左边,f[i][l][r] = Sum(f[i][l][m

HDU 4968 Improving the GPA(dp)

HDU 4968 Improving the GPA 题目链接 dp,最大最小分别dp一次,dp[i][j]表示第i个人,还有j分的情况,分数可以减掉60最为状态 代码: #include <cstdio> #include <cstring> #include <algorithm> using namespace std; int t, avg, n; double dp1[15][405], dp2[15][405]; double get(int x) { if

URAL 1167. Bicolored Horses (DP)

题目链接 题意 :农夫每天都会放马出去,然后晚上把马赶入马厩,于是让马排成一行入马厩,但是不想马走更多的路,所以让前p1匹入第一个马厩,p2匹马入第二个马厩…………但是他不想让他的任何一个马厩空着,所有的马都必须入马厩.有两种颜色的马,如果 i 匹黑马与 j 匹白马同在一个马厩,不愉快系数是 i * j,总系数就是k个系数相加.让总系数最小. 思路 : dp[i][j] 代表的是前 i 个马厩放 j 匹马的最小不愉快系数值. 1 //1167 2 #include <cstdio> 3 #in