数据挖掘-聚类分析

聚类分析是一种非监督的学习,分类是一种监督学习,就是用已经知道的类别的训练数据得到一个分类的模型,所以聚类与分类的主要区别在于是否需要预先定义好类别,也就是说聚类分析只是依靠数据本身来确定数据之间的关系的,所以聚类分析有很大的优越性特别是适合处理大量的原始的数据

聚类分析方法的性能指标:1.可扩展性,2,自适应性,3,鲁棒性4,可解释性

聚类使用的数据类是:数据矩阵 相异度矩阵

规范化是在中心化的基础上再做变换,确保变量的变化范围相等,常用的规范化方法有最大值归一化,总和规范化,均值标准差规范化 以及极差规范化

聚类分析方法包括 基于划分的方法 基于分层的方法  基于密度的方法  基于网格的方法 基于模型的方法

连续变量的距离需要满足自反性 对称性 正定性 以及三角不等式等条件,矩阵D是一个对称矩阵,且对角线上的元素是0.

相似系数 应该满足自反性 对称性 归一化 满足三角不等式

基于分割的聚类方法:k-均值算法  k-中心值算法

基于层次的聚了方法采用的是距离作为衡量聚类的标准    距离的度量的方法有:最小距离 最大距离 均值 等

分为自底向上和自顶向下的方法:其中自底向上是将每个对象作为一个簇,通过不断的合并这些基本的簇形成较大的簇,知道满足条件为止

自顶向下是首先将所有的对象看陈是一个簇中的对象,然后根据一定的准则不断的进行分割这个簇形成更小的簇,从而完成聚类

基于密度的聚类  主要饿算法有DBSCAN  OPTICS DENCLUE CLIQUE

基于网格的聚类  主要得算法有STING WaveCluster CLIQUE

基于模型的聚类  主要有神经网络方法和统计学方法

时间: 2024-10-10 08:53:07

数据挖掘-聚类分析的相关文章

数据挖掘-聚类分析(Python实现K-Means算法)

概念: 聚类分析(cluster analysis ):是一组将研究对象分为相对同质的群组(clusters)的统计分析技术.聚类分析也叫分类分析,或者数值分类.聚类的输入是一组未被标记的样本,聚类根据数据自身的距离或者相似度将其划分成若干个组,划分的原则是组内距离最小化而组间(外部)距离最大化.聚类和分类的不同在于:聚类所要求划分的类是未知的. 聚类度量的方法:分距离和相似度来度量. ? ? 聚类研究分析的方法: 1.层次的方法(hierarchical  method) 2.划分方法(par

数据挖掘——聚类分析总结

聚类分析 一.概念 聚类分析是按照个体的特征将他们分类,让同一个类别内的个体之间具有较高的相似度,不同类别之间具有较大的差异性 聚类分析属于无监督学习 聚类对象可以分为Q型聚类和R型聚类 Q型聚类:样本/记录聚类    以距离为相似性指标   (欧氏距离.欧氏平方距离.马氏距离.明式距离等) R型聚类:指标/变量聚类    以相似系数为相似性指标   (皮尔逊相关系数.夹角余弦.指数相关系数等) 二.常用的聚类算法 K-Means划分法 层次聚类法 DBSCAN密度法 1.K-Means划分法

【分享】数据挖掘学习资料免费下载

 Artificial Intelligence - Wiley - Data Mining - Concepts Models Methods and Algorithms - 2003.chm 8.4 MB  IEEE - Finding Patterns in Three Dimensional Graphs Algorithms and Applications to Scientific Data Mining.pdf 561.8 KB  Mining The Web - Discov

【数据挖掘技术】聚类分析

聚类(Clustering)分析有一个通俗的解释和比喻,那就是“物以类聚,人以群分”.针对几个特定的业务指标,可以将观察对象的群体按照相似性和相异性进行不同群组的划分.经过划分后,每个群组内部个对象间的相似度会很高,而在不同群组之间的对象彼此间将具有很高的相异度. 聚类技术一方面本身就是一种模型技术,通过有效聚类后的结果常常可以直接指导落地应用实践:另一方面聚类技术又常常作为数据分析过程中前期进行数据摸底和数据清洗.数据整理(数据转换)的工具,在实践应用中有多样性.多元性等特点. 一.聚类分析的

微软数据挖掘算法:Microsoft顺序分析和聚类分析算法(8)

前言 本篇文章继续我们的微软挖掘系列算法总结,前几篇文章已经将相关的主要算法做了详细的介绍,我为了展示方便,特地的整理了一个目录提纲篇:大数据时代:深入浅出微软数据挖掘算法总结连载,有兴趣的童鞋可以点击查阅,本篇我们将要总结的算法为:Microsoft顺序分析和聚类分析算法,此算法为上一篇中的关联规则分析算法的一个延伸,为关联规则分析算法所形成的种类进行了更细粒度的挖掘,挖掘出不同种类内部的事例间的顺序原则,进而用以引导用户进行消费. 应用场景介绍 Microsoft顺序分析和聚类分析算法,根据

【读书笔记-数据挖掘概念与技术】高级聚类分析

1   基于概率模型的聚类 例子: a.评论产品,一个评论可能设计多种产品,如一个评论谈论摄像机与计算机的兼容性,怎么办?该评论与这两个簇相关,而并不互斥地属于任何一个簇. b.用户在购买商品时,检索的信息中既订购了一部数据相机,并且同时比较了多种笔记本电脑,怎么办?这种会话应该在某种程度上数据这两个簇. 1.1   模糊簇 这节的例子还不错. 1.2   基于概率模型的聚类 对象以概率的方法参与多个簇. 混合模型假定观测对象集是来自多个概率簇的实例的混合. 以单变量高斯混合模型为例,假定每个簇

数据挖掘十大经典算法

一. C4.5  C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3 算法.   C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进: 1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足: 2) 在树构造过程中进行剪枝: 3) 能够完成对连续属性的离散化处理: 4) 能够对不完整数据进行处理. C4.5算法有如下优点:产生的分类规则易于理解,准确率较高.其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导

2017.06.29数据挖掘基础概念第十,十一章

第十章63.什么是聚类分析 一个把数据对象划分成子集的过程.每一个子集市一个簇,使得簇中的对象彼此相似,但与其他簇中的对象不相似.由聚类分析产生的簇的集合称做一个聚类.64.数据挖掘对聚类的要求 1.可伸缩性 2.处理不同属性类型的能力 3.发现任意形状的簇 4.对于确定输入参数的领域知识的要求 5.出来噪声数据的能力 6.增量聚类和对输入次序不敏感 7.聚类高维数据的能力 8.基于约束的聚类 9.可解释性和可用性 10.划分准则 11.簇的分离性 12.相似性度量 13.聚类空间65.基本聚类

R语言数据挖掘实战系列(1)

R语言数据挖掘实战(1) 一.数据挖掘基础 数据挖掘:从数据中"淘金",从大量数据(包括文本)中挖掘出隐含的.未知的.对决策有潜在价值的关系.模式和趋势,并用这些知识和规则建立用于决策支持的模型,提供预测性决策支持的方法.工具和过程. 数据挖掘的任务 利用分类与预测.聚类分析.关联规则.时序模式.偏差检测.智能推荐等方法,帮助企业提取数据中蕴含的商业价值,提高企业的竞争力. 数据挖掘建模过程 定义挖掘目标,即决定到底想干什么? 数据取样.抽取一个与挖掘目标相关的样本数据子集.抽取数据的