机器人学 —— 机器人视觉(Bundle Adjustment)

  今天完成了机器人视觉的所有课程以及作业,确实是受益匪浅啊!

  

  最后一个话题是Bundle Adjustment. 机器人视觉学中,最顶尖的方法。

1、基于非线性优化的相机位姿估计

  之前已经在拟合一篇中,已经补完了非线性最小二乘拟合问题。Bundle Adjustment,中文是光束平差法,就是利用非线性最小二乘法来求取相机位姿,三维点坐标。在仅给定相机内部矩阵的条件下,对四周物体进行高精度重建。Bundle Adjustment的优化目标依旧是最小重复投影误差。

  

  与利用non-linear mean square 解三角同,bundle adjustment 中所有的参数,RCX均为变量。N幅图则有N个位姿,X个点,我们会得到非常大的jacobbian Matrix.本质上,需要使用雅克比矩阵进行梯度下降搜索。详细见博客——拟合

2、雅克比矩阵

  雅克比矩阵的行代表信息,列代表约束  

  每一行是一个点在该位姿下的误差,每一列代表f对x分量的偏导数。

  

  q x c 均为变量,q是旋转四元素,x 是三维点空间坐标,c 是相机光心在世界坐标系下的坐标。J 可以分为三部分,前4列代表对旋转求导,中间三列代表对c求导,最后三列代表对x求导。其中,对旋转求导又可以分解为对旋转矩阵求导X旋转矩阵对四元素q求导。一旦获得J的表达式,我们就可以使用Newton-Gaussian 迭代对x寻优了。求导后的数学表达式如下:

  

  

  如果有两个相机,则总的雅克比矩阵如下:

  

  通过同时迭代所有的q C X ,最终可以同时得到世界点坐标,相机位姿 == SLAM!!!

  

  

  

  

  

时间: 2024-10-16 08:51:27

机器人学 —— 机器人视觉(Bundle Adjustment)的相关文章

机器人学 —— 机器人视觉(估计)

之前说到,机器人视觉的核心是Estimation.求取特征并配准,也是为了Estimation做准备.一旦配准完成,我们就可以从图像中估计机器人的位置,姿态.有了位置,姿态,我们可以把三维重建的东西进行拼接.从视觉信息估计机器人位姿的问题可以分为三个大类:1.场景点在同一平面上.2.场景点在三维空间中.3.两幅点云的配准. 所有问题有一个大前提就是知道相机内部矩阵K. 1.由单应矩阵进行位姿估计 单应矩阵原指从 R2--R2 的映射关系.但在估计问题中,如果我们能获得这种映射关系,就可以恢复从世

机器人学 —— 机器人视觉(基础)

机器人视觉是一种处理问题的研究手段.经过长时间的发展,机器人视觉在定位,识别,检测等多个方面发展出来各种方法.其以常见的相机作为工具,以图像作为处理媒介,获取环境信息. 1.相机模型 相机是机器人视觉的主要武器,也是机器人视觉和环境进行通信的媒介.相机的数学模型为小孔模型,其核心在于相似三角形的求解.其中有三个值得关注的地方: 1.1 1/f = 1/a + 1/b 焦距等于物距加上像距.此为成像定理,满足此条件时才能成清晰的像. 1.2 X  = x * f/Z 如果连续改变焦距f ,并同时移

机器人学 —— 机器人视觉(特征)

上回说到机器人视觉的核心任务是estimation,理论框架是射影几何理论.在之前的作业中展现了单应变换的巨大威力.然而,整个estimation 的首要条件是已知像素点坐标,尤其是多幅图中对应点的像素坐标. 单幅图像的处理方法都是大路货了,不赘述.这篇博客想讲讲不变点检测与不变特征.由于机器人在不断运动,所以可能从不同方向对同一物体进行拍摄.而拍摄的距离有远近,角度有titled. 由于射影变换本身的性质,无法保证两幅图中的物体看上去一样.所以我们需要一种特征提取方法(特征点检测),能够保证检

Pose-Graph Optimization vs Bundle Adjustment

Pose-Graph Optimization和Bundle Adjustment是Visual Odometry中两种重要的优化方式. Pose-Graph Optimization 相机位置可以表示为一幅图像:“点”为相机位置,“边”为相机位置间的刚体运动. Cost function: 其中,eij表示边,Ci和Cj是点(即相机位置),Teij表示位置i和j间的变换.Pose-graph optimization寻找能使cost function达到最小的相机位置参数. Loop Cons

bundle adjustment原理(1)转载

转自菠菜僵尸 http://www.cnblogs.com/shepherd2015/p/5848430.html bundle adjustment原理(1) 那些光束平差的工具,比如SBA.SSBA之类的虽然好,然而例子和教程都不够多且不够详细,让初学者难以上手. 要传入的参数虽然有解释,然而却也不是十分清楚其含义,具体要怎么生成,生成为什么形式. 我在折腾了一段时间后也还是没成功,逼得我自己找这方面的资料学习,想要更了解bundle adjustment的原理. 想着干脆自己写一个简单的b

机器人学 —— 机器人感知(Gaussian Model)

机器人感知是UPNN机器人专项中的最后一门课程,其利用视觉方法来对环境进行感知.与之前提到的机器人视觉不同,机器人感知更侧重于对环境物体的识别与检测.与计算机视觉不同,机器人视觉所识别的物体往往不需要高精度测量,物体也有明显特征.机器人感知最为典型的应用是对环境的感知 —— SLAM,同步定位与地图构建.如果说机器人视觉解决了where am I的问题,那么Robotic Perception 面对的是Who is it. 1.1D Gaussian 感知要解决的是对环境识别的问题,沿着PGM的

机器人视觉测量与控制

机器人视觉的基本概念 1.摄像机标定(Camera Calibration):对摄像机的内部参数.外部参数进行求取的过程. 2.视觉系统标定(Vision System Calibration):对摄像机和机器人之间关系的确定. 3.手眼系统(Hand-Eye System):又摄像机和机械手构成的机器人视觉系统. 4.Eye-in-Hand:摄像机安装在机械手末端并随机械手一起运动的视觉系统. 5.Eye-to-Hand:摄像机不安装在机械手末端,不随机械手运动的视觉系统. 6.视觉测量(Vi

机器人视觉跟踪与控制研究(一)

研究背景: 机器人视觉,通过图像获得外界信息,用于机器人对环境的感知. 提高机器人智能性.环境适应性.自主行为的重要途径. 近年来机器人领域的研究热点之一. 研究内容: 视觉系统标定 目标分割与图像处理 视觉测量与视觉控制 视觉系统标定 1基于环境信息的自标定 ?利用环境中的正交平行线获得消失点,标定摄像机的内参数 ?利用环境中的正交平行线确定摄像机的姿态 ?提出了利用正交平行线可靠标定摄像机内参数的必要条件 2基于相对运动的自标定 利用机器人末端的至少两次平移运动,标定出立体视觉系统的参数 3

机器人视觉系统笔记

机器人视觉系统研究 杭电图书馆 科学出版社 总页数:202 唯一QQ:1825587919 唯一WX:ly1825587919 PS:由于阅读效率原因,仅记录关键点 第一章  绪论 第二章 全向视觉系统 1.多摄像机拼接全向视觉系统 ringcam系统   五个摄像头2.鱼眼镜头全向视觉系统 短焦距,超广角镜头3.折反射式全向视觉系统 锥形,椭圆形,双曲线形,抛物线形 水平等比镜面,水平距离成像一样 垂直等比镜面,垂直距离成像一样 角度等比镜面 改进 由内到外 双曲,水平等比,垂直等比 标定方法