一致性哈希(Consistent Hashing)

传统来讲,数据的存储位置是通过hash(object)%N来计算的,这样造成的问题是如果新的机器添加进来或是某台机器down掉了,通过这种算法计算出来的存储位置会和以前的不同,造成了大量数据的迁移,如果有新的机器添加进来也会造成同样的问题,所以容错性和扩展性都不好。一致性哈希算法的主要目的是尽量减少数据的迁移。

一致性哈希假设有一个闭合圆环空间,上面有2**31个位置,数据通过特定的hash算法被分布到哈希圆环上。机器也通过特定的hash算法(输入值为机器的IP或是机器唯一的别名)放到圆环上,然后沿顺时针方向把数据(object)存储到离它最近的机器上。假设某一机器down掉了,就把原先存储在这台机器上的数据沿顺时针方向存储到最近的其他机器上。假设有新的机器添加进来,如果有数据离它的距离比原先存放的位置更近,则存放的新的机器上,这样大大减少了数据迁移的次数。

一致性哈希通过引入虚拟node解决了hotspot问题。Hotspot的出现是因为数据的分配不均匀,比如大量数据存放在某一节点上,其他节点的利用率很低。那么如何生成虚拟节点呢?假如node1要生成属于node1的三个虚拟node, 具体实现如下:

hash(node1‘s ip#1) -> node1-1

hash(node1‘s ip#2) -> node1-2

hash(node1‘s ip#3) -> node1-3

这个思路非常像Network Mobile Systems课上的virtual layer 2,思路是通过abstraction来增加分散性。然后将虚拟节点映射到实际节点上来实现查询。

Reference:

http://blog.csdn.net/cywosp/article/details/23397179/

时间: 2024-12-21 20:49:03

一致性哈希(Consistent Hashing)的相关文章

Go语言实现一致性哈希(Consistent Hashing)算法

一致性哈希可用于解决服务器均衡问题. 用Golang简单实现了下,并加入了权重.可采用合适的权重配合算法使用. package main //一致性哈希(Consistent Hashing) //author: Xiong Chuan Liang //date: 2015-2-20 import ( "fmt" "hash/crc32" "sort" "strconv" "sync" ) const DE

深入一致性哈希(Consistent Hashing)算法原理,并附100行代码实现

本文为实现分布式任务调度系统中用到的一些关键技术点分享——Consistent Hashing算法原理和Java实现,以及效果测试. 背景介绍 一致性Hashing在分布式系统中经常会被用到, 用于尽可能地降低节点变动带来的数据迁移开销.Consistent Hashing算法在1997年就在论文Consistenthashing and random trees中被提出. 先来简单理解下Hash是解决什么问题.假设一个分布式任务调度系统,执行任务的节点有n台机器,现有m个job在这n台机器上运

一致性哈希(consistent hashing)算法

文章同步发表在博主的网站朗度云,传输门:http://www.wolfbe.com/detail/201608/341.html 1.背景 我们都知道memcached服务器是不提供分布式功能的,memcached的分布式完全是由客户端来实现的.在部署memcached服务器集群时,我们需要把缓存请求尽可能分散到不同的缓存服务器中,这样可以使得所有的缓存空间都得到利用,而且可以降低单独一台缓存服务器的压力.     最简单的一种实现是,缓存请求时通过计算key的哈希值,取模后映射到不同的memc

用于KV集群的一致性哈希Consistent Hashing机制

KV集群的请求分发 假定N为后台服务节点数,当前台携带关键字key发起请求时,我们通常将key进行hash后采用模运算 hash(key)%N 来将请求分发到不同的节点上, 后台节点的增删会引起几乎所有key的重新映射, 这样会造成大量的数据迁移,如果数据量大的话会导致服务不可用. 一致性哈希机制 我倾向于称之为一致性哈希机制而不是算法, 因为这其实和算法没太大关系. 设计这种机制的目的是当节点增减时尽量减小重新映射的key的数量, 尽量将key还映射到原来的节点上. 而对于一致性哈希机制, 如

一致性hash算法 – consistent hashing

consistent hashing 算法早在 1997 年就在论文 Consistent hashing and random trees 中被提出,目前在cache 系统中应用越来越广泛: 1 基本场景 比如你有 N 个 cache 服务器(后面简称 cache ),那么如何将一个对象 object 映射到 N 个 cache 上呢,你很可能会采用类似下面的通用方法计算 object 的 hash 值,然后均匀的映射到到 N 个 cache :澳门威尼斯人赌场 hash(object)%N

2016 -Nginx的负载均衡 - 一致性哈希 (Consistent Hash)

Nginx版本:1.9.1 算法介绍 当后端是缓存服务器时,经常使用一致性哈希算法来进行负载均衡. 使用一致性哈希的好处在于,增减集群的缓存服务器时,只有少量的缓存会失效,回源量较小. 在nginx+ats / haproxy+squid等CDN架构中,nginx/haproxy所使用的负载均衡算法便是一致性哈希. 我们举个例子来说明一致性哈希的好处. 假设后端集群包含三台缓存服务器,A.B.C. 请求r1.r2落在A上. 请求r3.r4落在B上. 请求r5.r6落在C上. 使用一致性哈希时,当

一致性hash算法 - consistent hashing

1.背景 我们都知道memcached服务器是不提供分布式功能的,memcached的分布式完全是由客户端来实现的.在部署memcached服务器集群时,我们需要把缓存请求尽可能分散到不同的缓存服务器中,这样可以使得所有的缓存空间都得到利用,而且可以降低单独一台缓存服务器的压力.     最简单的一种实现是,缓存请求时通过计算key的哈希值,取模后映射到不同的memcahed服务器.这种简单的实现在不考虑集群机器动态变化的情况下也是比较有效的一种方案,但是,在分布式集群系统中,简单取模的哈希算法

_00013 一致性哈希算法 Consistent Hashing 探讨以及相应的新问题出现解决

一.业务场景 假如我们现在有12台Redis服务器(其它的什么东西也行),有很多User(用户)的数据数据从前端过来,然后往12台redis服务器上存储,在存储中就会出现一个问题,12台服务器,有可能其中几台Redis服务器上(简称集群A)存了很多的数据,然后另外几台Redis服务器(简称集群B)上存的数据很少,这样的话那 A 上的读写压力就会很大(当然,这个要看你的数据量的大小了,如果你数据量很小的话,基本无压力了,但是数据量很大,那就 ...),对于这样的问题,我们通常的解决办法是什么呢 ?

_00013 一致性哈希算法 Consistent Hashing 新的讨论,并出现相应的解决

笔者博文:妳那伊抹微笑 博客地址:http://blog.csdn.net/u012185296 个性签名:世界上最遥远的距离不是天涯,也不是海角,而是我站在妳的面前.妳却感觉不到我的存在 技术方向:Flume+Kafka+Storm+Redis/Hbase+Hadoop+Hive+Mahout+Spark ... 云计算技术 转载声明:能够转载, 但必须以超链接形式标明文章原始出处和作者信息及版权声明,谢谢合作. qq交流群:214293307  idkey=bf80524ac3630cb09