聚类
数据是么有标签的,属于无监督学习
hierarchical clustering
层次聚类法
- linkage:聚合距离函数
- fcluster:层次聚类函数
- 使用scipy包中的函数
# Import linkage and fcluster functions
from scipy.cluster.hierarchy import linkage, fcluster
# Use the linkage() function to compute distances
Z = linkage(df, 'ward')
# Generate cluster labels
df['cluster_labels'] = fcluster(Z, 2, criterion='maxclust')
# Plot the points with seaborn
sns.scatterplot(x='x', y='y', hue='cluster_labels', data=df)
plt.show()
kmeans
均值聚类
- 使用vq函数将样本数据中的每个样本点分配给一个中心点,形成n个聚类vq
- whiten:白化预处理是一种常见的数据预处理方法,作用是去除样本数据的冗余信息
Normalize a group of observations on a per feature basis.
# Import kmeans and vq functions
from scipy.cluster.vq import kmeans, vq
# Compute cluster centers
centroids,_ = kmeans(df, 2)
# Assign cluster labels
df['cluster_labels'], _ = vq(df, centroids)
# Plot the points with seaborn
sns.scatterplot(x='x', y='y', hue='cluster_labels', data=df)
plt.show()
# Import the whiten function
from scipy.cluster.vq import whiten
goals_for = [4,3,2,3,1,1,2,0,1,4]
# Use the whiten() function to standardize the data
scaled_data =whiten(goals_for)
print(scaled_data)
<script.py> output:
[3.07692308 2.30769231 1.53846154 2.30769231 0.76923077 0.76923077
1.53846154 0. 0.76923077 3.07692308]
fifa数据集的一个小demo
# Scale wage and value
fifa['scaled_wage'] = whiten(fifa['eur_wage'])
fifa['scaled_value'] = whiten(fifa['eur_value'])
# Plot the two columns in a scatter plot
fifa.plot(x='scaled_wage', y='scaled_value', kind = 'scatter')
plt.show()
# Check mean and standard deviation of scaled values
print(fifa[['scaled_wage', 'scaled_value']].describe())
<script.py> output:
scaled_wage scaled_value
count 1000.00 1000.00
mean 1.12 1.31
std 1.00 1.00
min 0.00 0.00
25% 0.47 0.73
50% 0.85 1.02
75% 1.41 1.54
max 9.11 8.98
原文地址:https://www.cnblogs.com/gaowenxingxing/p/12401364.html
时间: 2024-10-09 22:20:55