逻辑回归(logistic regression)

logistic regression可以解决分类问题,即输出的结果只有0和1两种,比如,对于邮件的判断只有是或者否。这种分类问题使用传统的线性回归并不能很好的解决。

一个小例子

例如,当我们根据肿瘤的大小判断一个肿瘤是不是良性的时候,输出结果只有是或者否,用1和0表示,给定的样本点,并且我们使用传统的线性回归问题解决拟合的函数图像如下:

图像中我们可以根据拟合曲线,当输出值大于0.5(根据图像判断的值)的时候,确定输出的为恶性(即为1);当输出值小于0.5(根据图像判断的值)的时候,确定输出的为良性(即为0)。但是,当我们有新的样本点加入的时候,如下图:

我们会发现,对于新的拟合曲线使用上面的方法和标准(0.5)并不能很好的做出预测。因此我们需要新的回归形式,即下面要说的logistic回归。

sigmoid function(logistic function)

sigmoid函数,又称为逻辑函数。是一个单调上升的函数,函数的形式如下:

1/(1 + EXP(-A*(X-C)))

其中A和C为参数,A控制着函数的陡峭程度,C控制着函数的对称点的水平坐标位置,下面用三个函数图像说明:

图像1,A=1,C=0:

图像2,A=10,C=0:

图像3,A=1,C=5:

逻辑回归(logistic regression)

从上面的图像可以看出,logistic函数很适合做我们刚开始提出的数据的拟合问题。现在我们假设我们以前的假设函数为

其中的θ为我们需要计算的参数,计算好的参数能够使得曲线很好的拟合样本点。

逻辑回归的参数拟合

对于给定的以上的回归模型,我们怎样拟合θ?这里我们使用概率统计中的最大似然估计做推导。

假设概率模型如下(因为函数值在0和1之间,因此我们可以直接假设如下,但实际上函数的值并不是概率):

上面的函数可以合并写成如下的形式:

因为y的值只有0和1,因此当y=0的时候只有后半部分;当y=1的时候,只有前半部分,因此,可以写成上面的形式。

跟以前一样,我们需要写出似然函数,然后拟合参数,使得似然函数最大化,似然函数如下(假设样本点满足独立同分布):

为了便于计算,取其对数:

至此,拟合参数为了最大化上面的形式。跟前面的一样,我们使用梯度下降的方法寻找使得函数最大化的参数值。首先求梯度:

然后,参数的迭代公式为如下形式(注意,这里为求函数的最大值,而前面的为求函数的最小值,因此符号为“+”):

剩下的就是选择梯度下降的算法,一般选择随机梯度下降。

逻辑回归(logistic regression),布布扣,bubuko.com

时间: 2024-10-12 23:40:44

逻辑回归(logistic regression)的相关文章

机器学习方法(五):逻辑回归Logistic Regression,Softmax Regression

技术交流QQ群:433250724,欢迎对算法.技术.应用感兴趣的同学加入. 前面介绍过线性回归的基本知识,线性回归因为它的简单,易用,且可以求出闭合解,被广泛地运用在各种机器学习应用中.事实上,除了单独使用,线性回归也是很多其他算法的组成部分.线性回归的缺点也是很明显的,因为线性回归是输入到输出的线性变换,拟合能力有限:另外,线性回归的目标值可以是(?∞,+∞),而有的时候,目标值的范围是[0,1](可以表示概率值),那么就不方便了. 逻辑回归可以说是最为常用的机器学习算法之一,最经典的场景就

机器学习 (三) 逻辑回归 Logistic Regression

文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人笔记,为我做个人学习笔记提供了很好的参考和榜样. § 3.  逻辑回归 Logistic Regression 1 分类Classification 首先引入了分类问题的概念——在分类(Classification)问题中,所需要预测的$y$是离散值.例如判断一封邮件是否属于垃圾邮件.判断一个在线交

机器学习笔记04:逻辑回归(Logistic regression)、分类(Classification)

之前我们已经大概学习了用线性回归(Linear Regression)来解决一些预测问题,详见: 1.<机器学习笔记01:线性回归(Linear Regression)和梯度下降(Gradient Decent)> 2.<机器学习笔记02:多元线性回归.梯度下降和Normal equation> 3.<机器学习笔记03:Normal equation及其与梯度下降的比较> 说明:本文章所有图片均属于Stanford机器学课程,转载请注明出处 面对一些类似回归问题,我们可

机器学习总结之逻辑回归Logistic Regression

机器学习总结之逻辑回归Logistic Regression 逻辑回归logistic regression,虽然名字是回归,但是实际上它是处理分类问题的算法.简单的说回归问题和分类问题如下: 回归问题:预测一个连续的输出. 分类问题:离散输出,比如二分类问题输出0或1. 逻辑回归常用于垃圾邮件分类,天气预测.疾病判断和广告投放. 一.假设函数 因为是一个分类问题,所以我们希望有一个假设函数,使得: 而sigmoid 函数可以很好的满足这个性质: 故假设函数: 其实逻辑回归为什么要用sigmoi

【机器学习】Octave 实现逻辑回归 Logistic Regression

34.62365962451697,78.0246928153624,0 30.28671076822607,43.89499752400101,0 35.84740876993872,72.90219802708364,0 60.18259938620976,86.30855209546826,1 79.0327360507101,75.3443764369103,1 45.08327747668339,56.3163717815305,0 61.10666453684766,96.51142

逻辑回归 logistic regression(1)逻辑回归的求解和概率解释

本系列内容大部分来自Standford公开课machine learning中Andrew老师的讲解,附加自己的一些理解,编程实现和学习笔记. 第一章 Logistic regression 1.逻辑回归 逻辑回归是一种监督学习的分类算法,相比较之前的线性回归算法,差别在于它是一个分类算法,这也意味着y不再是一个连续的值,而是{0,1}的离散值(两类问题的情况下). 当然这依然是一个判别学习算法,所谓判别学习算法,就是我们直接去预测后验 ,或者说直接预测判别函数的算法.当然相对应的生成学习算法,

Coursera机器学习-第三周-逻辑回归Logistic Regression

Classification and Representation 1. Classification Linear Regression (线性回归)考虑的是连续值([0,1]之间的数)的问题,而Logistic Regression(逻辑回归)考虑的是离散值(例如只能取0或1而不能取0到1之间的数)的问题.举个例子,你需要根据以往季度的电力数据,预测下一季度的电力数据,这个时候需要使用的是线性回归,因为这个值是连续的,而不是离散的.而当你需要判断这个人抽烟还是不抽烟的问题时,就需要使用逻辑回

机器学习之逻辑回归(Logistic Regression)

"""逻辑回归中的Sigmoid函数"""   import numpy as np   import matplotlib.pyplot as plt     def sigmoid(t):   return 1/(1+np.exp(-t))     x=np.linspace(-10,10,500)   y=sigmoid(x)     plt.plot(x,y)   plt.show() 结果: 逻辑回归损失函数的梯度:   逻辑回归算法:

sklearn逻辑回归(Logistic Regression,LR)调参指南

python信用评分卡建模(附代码,博主录制) https://study.163.com/course/introduction.htm?courseId=1005214003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share sklearn逻辑回归官网调参指南 https://scikit-learn.org/stable/modules/generated/sklearn.linear