卡特兰数 (Catalan)

卡特兰数:(是一个在计数问题中出现的数列)

一般项公式:

1.                2.  

递归公式:

1.  

2.

注:全部可推导。

(性质:Cn为奇数时,必然出现在奇数项 2k-1。 (除去第 0 项))

应用举例:

1. 连乘的 n 个数加括号。 答案: Cn-1

2. 一个(无穷大)的进栈序列为1,2,3,…,n,有多少个不同的出栈序列?  答案:Cn

引申1:入栈看作 1 操作, 出栈看作 0 操作,则整个序列入栈出栈后从左到右遍历 1 和 0 组成的序列,1 的个数总是不小于 0 的个数,且 1 和 0 各 n(入栈 n 次,出栈 n 次) 个。因此, n 个 1 和 n 个 0 组成的全部满足条件 1 出现次数不少于 0 的序列数为:  Cn

引申2: 将 1 看成 ‘(‘, 0 看成 ‘)‘, 则由 n 对 "()" 组成的有效序列 [‘(‘ 在 ‘)‘ 之前] 个数为: Cn

3.  n 个结点的二叉树个数: Cn

4.  n+2边的凸多边形分三角形方法的个数: Cn

5. 

时间: 2024-10-22 01:22:04

卡特兰数 (Catalan)的相关文章

[LeetCode系列]卡特兰数(Catalan Number) 在求解独特二叉搜寻树(Unique Binary Search Tree)中的应用分析

本文原题: LeetCode. 给定 n, 求解独特二叉搜寻树 (binary search trees) 的个数. 什么是二叉搜寻树? 二叉查找树(Binary Search Tree),或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值: 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值: 它的左.右子树也分别为二叉排序树. 举个栗子,给定 n = 3, 共有 5 个. 1 3 3 2 1 \ / / / \ 3 2 1 1

浅谈卡特兰数(Catalan number)的原理和应用

一.卡特兰数(Catalan number) 1.定义 组合数学中一个常出现在各种计数问题中出现的数列(用c表示).以比利时的数学家欧仁·查理·卡特兰的名字来命名: 2.计算公式 (1)递推公式 c[n]=Σc[k]*c[n-k-1],边界条件为c[0]=1; 其递推解为c[n]=C(2n,n)/(n+1),即卡特兰数的通项公式,其中C表示数的组合: (2)另类递推式 c[n]=c[n-1](4n-2)/(n+1),边界条件为c[0]=1; 其递推解为c[n]=C(2n,n)-C(2n,n-1)

卡特兰数(Catalan Number) 算法、数论 组合~

Catalan number,卡特兰数又称卡塔兰数,是组合数学中一个常出现在各种计数问题中出现的数列.以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)命名. 卡特兰数的前几个数 前20项为(OEIS中的数列A000108):1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190

卡特兰数(Catalan)及其应用

卡特兰数 大佬博客https://blog.csdn.net/doc_sgl/article/details/8880468 卡特兰数是组合数学中一个常出现在各种计数问题中出现的数列. 卡特兰数前几项为 : C0=1,C1=1,C2=2,C3=5,C4=14,C5=42,C6=132,C7=429,C8=1430,C9=4862,C10=16796 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 26

卡特兰数-Catalan数

卡特兰数的含义: 说到卡特兰数,就不得不提及卡特兰数序列,卡特兰数序列是一个整数序列,其通项公式是我们从中取出的就叫做第n个卡特兰数数,前几个卡特兰数数是:1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, -运用卡特兰数可以解决许多实际问题上的计数问题 卡特兰数的几个基本性质以及变形公式:(提示括号一上n一下m表示n中选择m个的组合数) 1.-->> 2. 3. 4. 以上的推导公式为其基本性质总结,

出栈顺序 与 卡特兰数(Catalan)的关系

一,问题描述 给定一个以字符串形式表示的入栈序列,请求出一共有多少种可能的出栈顺序?如何输出所有可能的出栈序列? 比如入栈序列为:1 2 3  ,则出栈序列一共有五种,分别如下:1 2 3.1 3 2.2 1 3.2 3 1.3 2 1 二,问题分析 先介绍几个规律: ①对于出栈序列中的每一个数字,在它后面的.比它小的所有数字,一定是按递减顺序排列的. 比如入栈顺序为:1 2 3 4. 出栈顺序:4 3 2 1是合法的,对于数字 4 而言,比它小的后面的数字是:3 2 1,且这个顺序是递减顺序.

卡特兰数(Catalan)

卡特兰数又称卡塔兰数,英文名Catalan number,是组合数学中一个常出现在各种计数问题中出现的数列.由以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)命名,其前几项为 : 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796. 通项:f(n) = f(0)*f(n-1) + f(1)*f(n-2) + .......+ f(n-2)*f(1) + f(n-1)*f(0) n>=2 f(n)=f(n-1)*(4n-2)/(n+1) 应用场景:

Catalan数——卡特兰数

一.Catalan数的定义 令h(0)=1,h(1)=1,Catalan数满足递归式:h(n) = h(0)*h(n-1) + h(1)*h(n-2) + ... + h(n-1)*h(0)  (n>=2) 该递推关系的解为:h(n) = C(2n,n)/(n+1),n=0,1,2,3,... (其中C(2n,n)表示2n个物品中取n个的组合数) 二.问题描述 12个高矮不同的人,排成两排,每排必须是从矮到高排列,而且第二排比对应的第一排的人高,问排列方式有多少种? 问题分析: 我们先把这12个

catalan卡特兰数

catalan卡特兰数:卡塔兰数是组合数学中一个常出现在各种计数问题中出现的数例.由比利时的数学家欧仁·查理·卡塔兰(1814-1894)命名.卡塔兰数的一般公式为 C(2n,n)/(n+1). 一般计算式为(递归):h(n)=(4n-2)/(n+1)*h(n-1)  (n>1),h(0)=1. 计算单个catalan的C++程序: ll catalan(int n) { if(n==0||n==1) return 1; ll sum=1; for(int i=2;i<=n;i++) sum=