初中数学——(课堂上没讲过却很简单的知识)

回忆一下初中数学,才发现自己并学到的东西很有限,初中的很多东西只是简单的涉及。最近有回到了初中的知识上,总结了一些在数学上自己发现和简单推理的东西。

一、勾股定理

很多人都知道勾股定理,也能够顺利的证明出来,毕竟课本上提供了很多用四边形证明的方法,不过如果给出一个圆和一个直角三角形,能证明吗?答案是肯定的,这个相信很多人在初中的时候就已经发现了(我是在学圆的时候偶然发现的)。

在这个三角形中,我们设圆的半径为r,即EO=DO=FO=r,AC=a,BC=b,AB=c。

我们都知道r可以用a、b、c表示出来,用面积法可以轻易得出r=ab/(a+b+c);利用圆的切线的性质可以轻易得出r=(a+b-c)/2。

将这两个式子相等,可以推出a^2+b^2=c^2。并且在证明过程中没有用到与勾股定理有关的推论或者它本身,所以我们就可以把这个当做是一个正确的证明方法了。

二、抛物线

(1)、  不知道有多少人和我一样,在初中的学习中一直没有弄明白抛物线的定义,便开始使用了。到了高中,还是新华词典告诉我什么是抛物线:到定点和定直线的距离相等的点的集合。

对于一条对称轴垂直于x轴的抛物线,我们可以进行一些下面简单的推论。

我们先从反面进行验算:

再把情况放的特殊点,设抛物线解析式y=ax^2+c(a<>0),那么我们就可以把定直线看做x轴,定点坐标为       M(0,2c)。设抛物线上的点坐标为P(t,at^2+c),s1为点P到x轴的距离,s2为线段PM的长度。s1=at^2+c,

s2=(t^2+(2c-at^2-c)^2)^(1/2),中间的化简过程就不在写出了。s1^2=a^2t^4+c^2+2act^2,s2^2=(1-2ac)t^2+a^2t^4+c^2,比较s1和s2我们可以看到(1-2ac)t^2=2act^2   ∴c=1/(4a)

所以y=ax^2+(1/(4a)),所以定点的坐标就是(0,1/(2a)),定直线就是x轴。

把这条抛物线平移,就可以的得到任意一条抛物线y=ax^2+bx+c(a<>0)所对应的定点(-b/(2a),(4ac-b^2+1)/(4a)),定直线的解析式为y=((4ac-b^2-1)/(4a))。

我们回到原来的定义,对于一个定点(p,q)和定直线y=t(在这里,我们为了简化,就只看定直线平行于x轴的情况),我们可以的到抛物线的解析式为y=(1/(2q-2t))x^2+(p/(t-q))x+((p^2+q^2-t^2)/(2q-2t))。

这样,对于对称轴垂直于y轴的情况也可以将x、y互换得到,当然也可以将坐标轴中y轴与抛物线的对称轴平行建立,然后进行一些旋转就可以了,虽然y不再是x的函数,但是x、y之间的关系也可以表示出来。

对于一条抛物线,经过焦点(也就是之前所说的定点)的光线(数学中的直线)经抛物线反射后一定是与对称轴平行的。

(2)、应用:最后,我们来看一个神奇的物理学上抛物线的应用(初中的时候竟然弱弱的不知道)。

我们都知道,自行车灯用互相垂直的两个平面镜,就能将入射光平行射出。对于一些车灯,它们的灯罩显然不是两个互相垂直的平面镜这么简单,有的是一个抛物线绕着对称轴旋转而成的空间图形,我们这里利用以上的性质就可以发现,这样的灯光散射的少,也就能使光更加的明亮集中。

证明如下:在抛物线y=ax^2+(1/(4a))(a<>0)中,取点P(t,at^2+(1/(4a))),我们从这点向x轴做垂直,垂足为C,抛物线焦点M(0,1/(2a)),P点处抛物线的切线与y轴的交点为D,则这条切线的解析式y=2atx+1/(4a)-at^2(这条直线解析式的k值就是抛物线在P点处的斜率),那么D点坐标就是(0,1/(4a)-at^2),MD=MP=PC,且MD∥PC,所以四边形MDCP就是一个菱形,从而过M点的反射时法线的平行线(也就是过M点的切线的垂线)平分角DMP,从而反射光线和入射光线之间的夹角的大小就等于角DMP,从而证明了反射光线与y轴平行。

希望以后能发现更多美丽的数学的知识,来充实小小的博客。

时间: 2024-10-01 02:21:43

初中数学——(课堂上没讲过却很简单的知识)的相关文章

腾讯课堂目标2017初中数学联赛集训队作业题解答-10

课程链接:目标2017初中数学联赛集训队-1(赵胤授课) 1. 已知二次函数 $y = 3ax^2 + 2bx - (a + b)$, 当 $x = 0$ 和 $x = 1$ 时, $y$ 的值均为正数, 则当 $0 < x < 1$ 时, 抛物线与 $x$ 轴的交点个数是多少? 解答: 令 $f(x) = 3ax^2 + 2bx - (a + b)$, $$\Rightarrow \begin{cases}f(0) = -(a + b) > 0\\ f(1) = 3a + 2b - (

腾讯课堂目标2017初中数学联赛集训队作业题解答-9

课程链接:目标2017初中数学联赛集训队-1(赵胤授课) 1. 已知 $a$, $b$, $c$ 为整数, 且 $a+b = 2006$, $c - a = 2005$. 若 $a < b$, 则 $a + b + c$ 之最大值是多少? 解答: $\because a, b\in\mathbf{Z}$, $a + b = 2006$, $\therefore a \le 1002$, 因此由 $$\begin{cases}a + b = 2006\\ c - a = 2005\end{case

腾讯课堂目标2017初中数学联赛集训队作业题解答-5

课程链接:目标2017初中数学联赛集训队-1(赵胤授课) 1. 凸四边形 $ABCD$ 中, $S_{\triangle{ABD}} + S_{\triangle{ABC}} = S_{\triangle{BCD}}$, $M$, $N$ 分别在 $AC$, $CD$ 上, $AM : AC = CN : CD$, 且 $B$, $M$, $N$ 共线, 求证: $M$, $N$ 分别为 $AC$, $CD$ 之中点. 解答: 考虑列出面积方程求解. 令$${AM \over AC} = {CN

腾讯课堂目标2017初中数学联赛集训队作业题解答-8

课程链接:目标2017初中数学联赛集训队-1(赵胤授课) 1. 若 $x$, $y$ 是非零实数, 使得 $|x| + y = 3$ 和 $|x|y + x^3 = 0$, 则 $x + y = ?$ 解答: 考虑去绝对值符号. $$|x|y + x^3 = 0\Rightarrow y = -|x|x $$ 若 $x \ge 0$, 则 $y = -x^2$, 代入得 $$x - x^2 = 3 \Rightarrow x^2 - x + 3 = 0 \Rightarrow \Delta =

腾讯课堂目标2017初中数学联赛集训队作业题解答-11

课程链接:目标2017初中数学联赛集训队-1(赵胤授课) 1. 证明: 当素数 $p\ge7$ 时, $p^4 - 1$ 可被 $240$ 整除. 解答: $$p^4 - 1 = (p^2 + 1)(p + 1)(p - 1)$$ $$\Rightarrow \begin{cases}24\ \big{|}\ (p+1)(p-1)\\10\ \big{|}\ p^4 - 1\end{cases} \Rightarrow 240\ \big{|}\ p^4 - 1.$$ 注: $10\ \big{

数学奥林匹克问题解答:猿辅导初中数学竞赛基础特训营作业题

猿辅导(点击进入官网)初中数学竞赛基础特训营于2016年8月27-31日在网络上举行,五天课程总计上课人数超过3万人.授课内容包括四个专题:整数的基本性质.抽屉原理初步.方程与不等式及平面几何新讲初步.以下为本次特训营作业题解答. 1.$a, b$ 是任意自然数, 试证明: $30\ \big{|}\ \left[ab(a^4 - b^4)\right]$. (Hungary) 证明: $$ab(a^4 - b^4) = ab\left[\left(a^4 - 1\right) - \left(

数学奥林匹克问题解答:目标2017初中数学联赛集训队作业题解答-2

课程链接:目标2017初中数学联赛集训队-1(赵胤授课) 1.证明: 不等边三角形之三条外角平分线与对边延长线之交点必共线. 证明: 考虑Menelaus定理, 暨证明$${AF \over FB}\cdot{BD \over DC}\cdot{CE \over EA} = 1.$$由外角平分线定理可知, ${AF \over FB} = {AC \over BC}$, ${BD \over DC} = {AB \over AC}$, ${CE \over EA} = {BC \over AB}

课堂上禁用手机拍摄(转载)

by 石毓智 手写是一种不可替代的重要学习方法,然而随着电脑的普及,特别是智能手机的大众化,这种学习方法受到了严重的威胁.下面以我自己的经历和学习经验谈谈手写学习法的重要性. 现在的手机也是相机,很多人就用手机代替手写,把它作为一种记录信息的工具,看起来手机的“记录功能”准确无误,而实际上严重威胁学习成效.下面就谈谈这个问题. 自从有了电脑以后,人们用手写的机会就越来越少了.现在不少学生课堂上用手机拍摄教学内容,不想用笔记.很多世界知名的大学有明确规定,课堂上禁止用手机拍摄教学内容. 斯坦福大学

熟读高数才能理解机器学习?不,初中数学就够了

导读 谁说理解机器学习必须要熟读高数? 近日,数据科学Kyle在Medium发布博客表示,理解机器学习在做的事情,有初中数学知识足矣. 这篇博客简洁易懂.幽默风趣,在Medium上几天内获得600多赞.量子位将文章翻译整理如下,与大家分享: 当下理解我们人工智能的方式通常比较极端,要么通过媒体,越来越耸人听闻的观点让人难以想象.要么通过文献,充满晦涩语言和特定术语的论文让人难以理解. 理解AI的正确姿势应该在两个极端之间,这就需要你在新闻或文献之外理性判断,对于一般人来说,至少应该知道AI是什么