似然函数的概念

数理统计学中,似然函数是一种关于统计模型中的参数函数,表示模型参数中的似然性

似然函数在统计推断中有重大作用,如在最大似然估计费雪信息之中的应用等等。“似然性”与“或然性”或“概率”意思相近,都是指某种事件发生的可能性,但是在统计学中,“似然性”和“或然性”或“概率”又有明确的区分。

概率 用于在已知一些参数的情况下,预测接下来的观测所得到的结果,而

似然性 则是用于在已知某些观测所得到的结果时,对有关事物的性质的参数进行估计。

在这种意义上,似然函数可以理解为条件概率的逆反。

在已知某个参数B时,事件A会发生的概率写作

利用贝叶斯定理

因此,我们可以反过来构造表示似然性的方法:已知有事件A发生,运用似然函数,我们估计参数B的可能性。

形式上,似然函数也是一种条件概率函数,但我们关注的变量改变了:

注意到这里并不要求似然函数满足归一性:。一个似然函数乘以一个正的常数之后仍然是似然函数。对所有α > 0,都可以有似然函数:

例子:

考虑投掷一枚硬币的实验。通常来说,已知投出的硬币正面朝上和反面朝上的概率各自是pH = 0.5,便可以知道投掷若干次后出现各种结果的可能性。比如说,投两次都是正面朝上的概率是0.25。用条件概率表示,就是:

其中H表示正面朝上。

在统计学中,我们关心的是在已知一系列投掷的结果时,关于硬币投掷时正面朝上的可能性的信息。我们可以建立一个统计模型:假设硬币投出时会有pH 的概率正面朝上,而有1 − pH 的概率反面朝上。这时,条件概率可以改写成似然函数:

也就是说,对于取定的似然函数,在观测到两次投掷都是正面朝上时,pH = 0.5 的似然性是0.25(这并不表示当观测到两次正面朝上时pH = 0.5 的概率是0.25)。

如果考虑pH = 0.6,那么似然函数的值也会改变。

注意到似然函数的值变大了。这说明,如果参数pH 的取值变成0.6的话,结果观测到连续两次正面朝上的概率要比假设pH = 0.5时更大。也就是说,参数pH 取成0.6 要比取成0.5 更有说服力,更为“合理”。总之,似然函数的重要性不是它的具体取值,而是当参数变化时函数到底变小还是变大。对同一个似然函数,如果存在一个参数值,使得它的函数值达到最大的话,那么这个值就是最为“合理”的参数值。

在这个例子中,似然函数实际上等于:

, 其中

如果取pH = 1,那么似然函数达到最大值1。也就是说,当连续观测到两次正面朝上时,假设硬币投掷时正面朝上的概率为1是最合理的。

类似地,如果观测到的是三次投掷硬币,头两次正面朝上,第三次反面朝上,那么似然函数将会是:

, 其中T表示反面朝上,

这时候,似然函数的最大值将会在的时候取到。也就是说,当观测到三次投掷中前两次正面朝上而后一次反面朝上时,估计硬币投掷时正面朝上的概率是最合理的。

时间: 2024-10-20 09:34:31

似然函数的概念的相关文章

[白话解析] 深入浅出 极大似然估计 & 极大后验概率估计

[白话解析] 深入浅出极大似然估计 & 极大后验概率估计 0x00 摘要 本文在少用数学公式的情况下,尽量仅依靠感性直觉的思考来讲解 极大似然估计 & 极大后验概率估计,并且从名著中找了几个实例给大家看看这两种估计如何应用 & 其非常有趣的特点. 0x01 背景知识 1. 概率 vs 统计 概率(probability)和统计(statistics)看似两个相近的概念,其实研究的问题刚好相反. 1.1 概率 概率研究的是,已经知道了模型和参数后,给出一个事件发生的概率. 概率是一种

线性回归,逻辑回归的学习(包含最小二乘法及极大似然函数等)

博文参考了以下两位博主的文章:http://blog.csdn.net/lu597203933/article/details/45032607,http://blog.csdn.net/viewcode/article/details/8794401 回归问题的前提: 1) 收集的数据 2) 假设的模型,即一个函数,这个函数里含有未知的参数,通过学习,可以估计出参数.然后利用这个模型去预测/分类新的数据. 1. 线性回归 假设 特征 和 结果 都满足线性.即不大于一次方.这个是针对 收集的数据

EM算法概念

EM算法是一种非常经典的alternative optimizing算法.alternative optimizing的思想就是对于一个最优化问题,可以计算分为两步或者参数分为两个,就可以随机任意的选择一个起始值或位置,固定一个参数A,以另一个参数B进行优化,然后固定参数B,以参数A进行优化,直到收敛未知.前面博文中所讲述的K-means也就这样的一个过程,或者meanshift均值漂移也是这样的一个思想.今天学习的一个算法也是这样一个概念.这里依然做一个入门级的概念理解指导,不做原理性的深入,

先验概率、后验概率、似然估计,似然函数、贝叶斯公式

联合概率的乘法公式: (如果随机变量是独立的,则)  由乘法公式可得条件概率公式:, , 全概率公式:,其中 (,则,则可轻易推导出上式) 贝叶斯公式: 又名后验概率公式.逆概率公式:后验概率=似然函数×先验概率/证据因子.解释如下,假设我们根据“手臂是否很长”这个随机变量(取值为“手臂很长”或“手臂不长”)的观测样本数据来分析远处一个生物是猩猩类别还是人类类别(假设总共只有这2种类别).我们身处一个人迹罕至的深山老林里,且之前就有很多报道说这里有猩猩出没,所以无需观测样本数据就知道是猩猩的先验

机器学习笔记之基础概念

本文基本按照<统计学习方法>中第一章的顺序来写,目录如下: 1. 监督学习与非监督学习 2. 统计学习三要素 3. 过拟合与正则化(L1.L2) 4. 交叉验证 5. 泛化能力 6. 生成模型与判别模型 7. 机器学习主要问题 8. 提问 正文: 1. 监督学习与非监督学习 从标注数据中学习知识的规律以及训练模型的方法叫做监督学习,但由于标注数据获取成本较高,训练数据的数量往往不够,所以就有了从非标注数据,也就是非监督数据中学习的方法. 由于非监督数据更容易获取,所以非监督学习方法更适合于互联

概念介绍(机器学习)

似然函数:似然函数在形式上就概率密度函数.   似然函数用来估计某个参数. 最大似然函数:就是求似然函数的最大值.         最大似然函数用于估计最好的参数. 最小二乘法:它通过最小化误差的平方和寻找数据的最佳函数匹配.就是求 y=a1+a2x的系数.通过最小化误差的平方,然后求系数的偏导数,令导数为0,求解. 梯度下降法,基于这样的观察:如果实值函数  在点  处可微且有定义,那么函数 在  点沿着梯度相反的方向  下降最快.就是求最低点. 局部加权回归:它的中心思想是在对参数进行求解的

1_基本概念

概率(probability) 旧称幾率,又称或然率.机会率或几率.可能性,是数学概率论的基本概念,是一个在0到1之间的实数,是对随机事件发生之可能性的度量. 以下给出概率的公理化定义: 设随机事件的样本空间为Ω,Ω的一个子集称为事件.对于Ω中的每一个事件A,都有实函数P(A),满足: 非负性: P(A)≥0 规范性: P(Ω)=1 可数可加性:对可数个两两互斥事件{Ai}i∈N有: 任意一个满足上述条件的函数P都可以作为样本空间Ω的概率函数,称函数值P(A)为Ω中事件A的概率. 最大似然估计(

【机器学习-斯坦福】学习笔记3 - 欠拟合与过拟合概念

原文  http://blog.csdn.net/maverick1990/article/details/11721453 欠拟合与过拟合概念 本次课程大纲: 1.   局部加权回归 :线性回归的变化版本 2.   概率解释 :另一种可能的对于线性回归的解释 3.   Logistic 回归 :基于 2 的一个分类算法 4.   感知器算法 :对于 3 的延伸,简要讲 复习:   – 第 i 个训练样本 令  ,以参数向量  为条件,对于输入 x ,输出为: n 为特征数量 定义成本函数 J 

概念主题模型简记

概念主题模型(PTM, probabilitytopical model)在自然语言处理(NLP,natural language processing)中有着重要的应用.主要包括以下几个模型:LSA(latentsemantic analysis). PLSA(probability latent semantic analysis).LDA(latentdirichlet allocation)和HDP(hirerachical dirichlet processing),这里用一张图给出它