POJ 1087 A Plug for UNIX 会议室插座问题 构图+最大流

题目链接:POJ 1087 A Plug for UNIX


A Plug for UNIX

Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 13809   Accepted: 4623

Description

You are in charge of setting up the press room for the inaugural meeting of the United Nations Internet eXecutive (UNIX), which has an international mandate to make the free flow of information and ideas on the Internet as cumbersome and bureaucratic as possible.

Since the room was designed to accommodate reporters and journalists from around the world, it is equipped with electrical receptacles to suit the different shapes of plugs and voltages used by appliances in all of the countries that existed when the room was
built. Unfortunately, the room was built many years ago when reporters used very few electric and electronic devices and is equipped with only one receptacle of each type. These days, like everyone else, reporters require many such devices to do their jobs:
laptops, cell phones, tape recorders, pagers, coffee pots, microwave ovens, blow dryers, curling

irons, tooth brushes, etc. Naturally, many of these devices can operate on batteries, but since the meeting is likely to be long and tedious, you want to be able to plug in as many as you can.

Before the meeting begins, you gather up all the devices that the reporters would like to use, and attempt to set them up. You notice that some of the devices use plugs for which there is no receptacle. You wonder if these devices are from countries that didn‘t
exist when the room was built. For some receptacles, there are several devices that use the corresponding plug. For other receptacles, there are no devices that use the corresponding plug.

In order to try to solve the problem you visit a nearby parts supply store. The store sells adapters that allow one type of plug to be used in a different type of outlet. Moreover, adapters are allowed to be plugged into other adapters. The store does not have
adapters for all possible combinations of plugs and receptacles, but there is essentially an unlimited supply of the ones they do have.

Input

The input will consist of one case. The first line contains a single positive integer n (1 <= n <= 100) indicating the number of receptacles in the room. The next n lines list the receptacle types found in the room. Each receptacle type consists of a string
of at most 24 alphanumeric characters. The next line contains a single positive integer m (1 <= m <= 100) indicating the number of devices you would like to plug in. Each of the next m lines lists the name of a device followed by the type of plug it uses (which
is identical to the type of receptacle it requires). A device name is a string of at most 24 alphanumeric

characters. No two devices will have exactly the same name. The plug type is separated from the device name by a space. The next line contains a single positive integer k (1 <= k <= 100) indicating the number of different varieties of adapters that are available.
Each of the next k lines describes a variety of adapter, giving the type of receptacle provided by the adapter, followed by a space, followed by the type of plug.

Output

A line containing a single non-negative integer indicating the smallest number of devices that cannot be plugged in.

Sample Input

4
A
B
C
D
5
laptop B
phone C
pager B
clock B
comb X
3
B X
X A
X D 

Sample Output

1

Source

East Central North America 1999

分析:

发现基本构图好了,网络流的题目就很好解了。

(1)以0为源点,1为汇点,其他的插座还有设备都作为中间点

(2)会议室提供n个插座,从源点到每个插座连一条边,容量为1

(3)会议室有m个设备,从每个设备到汇点连一条边,容量为1

(4)每个设备使用一个插座,从相应插座到设备连一条边,容量为1

(5)有k中转接器,从插头到转接器提供插座类型连一条边,即前者可以转化为后者,容量为无穷,因为可以串联。

(6)求从源点到汇点最大流,及最多使用设备数目maxflow,最后结果为m-maxflow。

代码;

Dinic:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <vector>
#include <queue>
using namespace std;

#define maxn 1010
#define INF 0x3f3f3f3f

struct Edge
{
    int from, to, cap;
};

vector<Edge> EG;
vector<int> G[maxn];
int n, s, t, d[maxn], cur[maxn], mp[maxn][maxn];
char name[maxn][30];
int cnt;
void addEdge(int from, int to, int cap)
{
    EG.push_back((Edge){from, to, cap});
    EG.push_back((Edge){to, from, 0});
    int x = EG.size();
    G[from].push_back(x-2);
    G[to].push_back(x-1);
}

bool bfs()
{
    memset(d, -1, sizeof(d));
    queue<int> q;
    q.push(s);
    d[s] = 0;
    while(!q.empty())
    {
        int x = q.front();
        q.pop();
        for(int i = 0; i < G[x].size(); i++)
        {
            Edge& e = EG[G[x][i]];
            if(d[e.to] == -1 && e.cap > 0)
            {
                d[e.to] = d[x]+1;
                q.push(e.to);
            }
        }
    }
    return (d[t]!=-1);
}

int dfs(int x, int a)
{
    if(x == t || a == 0) return a;
    int flow = 0, f;
    for(int& i = cur[x]; i < G[x].size(); i++)
    {
        Edge& e = EG[G[x][i]];
        if(d[x]+1 == d[e.to] && (f = dfs(e.to, min(a, e.cap))) > 0)
        {
            e.cap -= f;
            EG[G[x][i]^1].cap += f;
            flow += f;
            a -= f;
            if(a == 0) break;
        }
    }
    return flow;
}
int Dinic()
{
    int ans = 0;
    while(bfs())
    {
        memset(cur, 0, sizeof(cur));
        ans += dfs(s, INF);
    }
    EG.clear();
    for(int i = 0; i < n; ++i)
        G[i].clear();
    return ans;
}

int Find(char* str)
{
    int i;
    for(i = 2; i < cnt; ++i)
        if(strcmp(name[i], str) == 0)
            return i;
    strcpy(name[i], str);
    cnt++;
    return i;
}
int main()
{
    //freopen("poj_1087.txt", "r", stdin);
    int m, k;
    char str1[30], str2[30];
    while(~scanf("%d", &n)) {
        s = 0, t = 1;
        cnt = 2;    //源点和汇点占两个
        for(int i = 0; i < n; i++) {
            scanf("%s", str1);
            strcpy(name[cnt], str1);    //插座不会从父,直接插入
            cnt++;
            addEdge(0, i+2, 1);     //建边,源点向每个插座连一条1的边
        }
        scanf("%d", &m);
        for(int i = 0; i < m; i++) {
            scanf("%s%s", str1, str2);
            strcpy(name[cnt], str1);    //设备也不会重复。直接插入
            cnt++;
            int u = Find(str2);         //扎里插座可能重复,要查找
            addEdge(u, cnt-1, 1);   //建边,插座向设备连一条容量为1的边
            addEdge(cnt-1, 1, 1);       //建边,设备到汇点连一条边,容量为1
        }
        scanf("%d", &k);
        for(int i = 0; i < k; i++) {
            scanf("%s%s", str1, str2);
            int u = Find(str1);
            int v = Find(str2);
            addEdge(v, u, INF);     //建边,后者到前者容量为无穷
        }
        n = cnt;
        int ans = Dinic();
        printf("%d\n", m-ans);
    }
    return 0;
}

ISAP:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <vector>
#include <queue>
using namespace std;

#define maxn 1010
#define INF 0x3f3f3f3f

struct Edge
{
    int from, to, cap, flow;
};

char name[maxn][30];
vector<Edge> EG;
vector<int> G[maxn];
int n, s, t, d[maxn], cur[maxn], p[maxn], num[maxn], mp[maxn][maxn];
bool vis[maxn];
int cnt;
void addEdge(int from, int to, int cap)
{
    EG.push_back((Edge){from, to, cap, 0});
    EG.push_back((Edge){to, from, 0, 0});
    int x = EG.size();
    G[from].push_back(x-2);
    G[to].push_back(x-1);
}

void bfs()
{
    memset(vis, false, sizeof(vis));
    queue<int> q;
    vis[t] = true;
    d[t] = 0;
    q.push(t);
    while(!q.empty()) {
        int x = q.front();
        q.pop();
        for(int i = 0; i < G[x].size(); i++) {
            Edge& e = EG[G[x][i]^1];
            if(!vis[e.from] && e.cap > e.flow) {
                vis[e.from] = true;
                d[e.from] = d[x]+1;
                q.push(e.from);
            }
        }
    }
}

int augment()
{
    int x = t, a = INF;
    while(x != s) {
        Edge& e = EG[p[x]];
        a = min(a, e.cap-e.flow);
        x = EG[p[x]].from;
    }
    x = t;
    while(x != s) {
        EG[p[x]].flow += a;
        EG[p[x]^1].flow -= a;
        x = EG[p[x]].from;
    }
    return a;
}
int ISAP()
{
    int ans =0;
    bfs();
    memset(num, 0, sizeof(num));
    for(int i = 0; i < n; i++)
        num[d[i]]++;
    int x = s;
    memset(cur, 0, sizeof(cur));
    while(d[s] < n) {
        if(x == t) {
            ans += augment();
            x = s;
        }
        bool flag = false;
        for(int i = cur[x]; i < G[x].size(); i++) {
            Edge& e = EG[G[x][i]];
            if(e.cap > e.flow && d[x] == d[e.to]+1) {
                flag = true;
                p[e.to] = G[x][i];
                cur[x] = i;
                x = e.to;
                break;
            }
        }
        if(!flag) {
            int m = n-1;
            for(int i = 0; i < G[x].size(); i++) {
                Edge& e = EG[G[x][i]];
                if(e.cap > e.flow)
                    m = min(m, d[e.to]);
            }
            if(--num[d[x]] == 0) break;
            num[d[x] = m+1]++;
            cur[x] = 0;
            if(x != s)
                x = EG[p[x]].from;
        }
    }
    EG.clear();
    for(int i = 0; i < n; ++i)
        G[i].clear();
    return ans;
}
int Find(char* str)
{
    int i;
    for(i = 2; i < cnt; ++i)
        if(strcmp(name[i], str) == 0)
            return i;
    strcpy(name[i], str);
    cnt++;
    return i;
}
int main()
{
    //freopen("poj_1087.txt", "r", stdin);
    int m, k;
    char str1[30], str2[30];
    while(~scanf("%d", &n)) {
        s = 0, t = 1;
        cnt = 2;
        for(int i = 0; i < n; i++) {
            scanf("%s", str1);
            strcpy(name[cnt], str1);
            cnt++;
            addEdge(0, i+2, 1);
        }
        scanf("%d", &m);
        for(int i = 0; i < m; i++) {
            scanf("%s%s", str1, str2);
            strcpy(name[cnt], str1);
            cnt++;
            int u = Find(str2);
            addEdge(u, cnt-1, 1);
            addEdge(cnt-1, 1, 1);
        }
        scanf("%d", &k);
        for(int i = 0; i < k; i++) {
            scanf("%s%s", str1, str2);
            int u = Find(str1);
            int v = Find(str2);
            addEdge(v, u, INF);
        }
        n = cnt;
        int ans = ISAP();
        printf("%d\n", m-ans);
    }
    return 0;
}

不知为何,总感觉我的Dinic比ISAP要快,基本每次都是,不应该啊。

时间: 2024-10-08 05:30:20

POJ 1087 A Plug for UNIX 会议室插座问题 构图+最大流的相关文章

POJ 1087 A Plug for UNIX (网络最大流)

POJ 1087 A Plug for UNIX 链接:http://poj.org/problem?id=1087 题意:有n(1≤n≤100)个插座,每个插座用一个数字字母式字符串描述(至多有24 个字符).有m(1≤m≤100)个设备,每个设备有名称,以及它使用的插头的名称:插头的名称跟它所使用的插座的名称是一样的:设备名称是一个至多包含24 个字母数字式字符的字符串:任何两个设备的名称都不同:有k(1≤k≤100)个转换器,每个转换器能将插座转换成插头. 样例: 4 A B C D 5

POJ 1087 A Plug for UNIX(网络流之最大流)

题目地址:POJ 1087 不知道是谁把这题化为了二分最大匹配的专题里..于是也没多想就按照二分图的模型来建的(虽然当时觉得有点不大对...).后来发现二分最大匹配显然不行..有权值..直接来个最大流多方便..然后一直WA..后来仔细想了想..这根本就不能建二分图啊....这题跟二分图一点关系都没有.... 这题的建图思路是让源点与每一个设备的插座类型连边,让汇点与每一个插座连边.然后用floyd判断该设备能否通过转换转换成可以插的插座上.只要可以转换成的就连边,权值为INF.然后求一次最大流,

POJ 1087 A Plug for UNIX (最大流)

A Plug for UNIX Time Limit: 1000MS   Memory Limit: 65536K       Description You are in charge of setting up the press room for the inaugural meeting of the United Nations Internet eXecutive (UNIX), which has an international mandate to make the free

poj 1087 A Plug for UNIX(字符串编号建图)

A Plug for UNIX Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14862   Accepted: 5026 Description You are in charge of setting up the press room for the inaugural meeting of the United Nations Internet eXecutive (UNIX), which has an int

poj 1087 A Plug for UNIX 【最大流】

题目连接:http://poj.org/problem?id=1087 题意: n种插座 ,m个电器,f组(x,y)表示插座x可以替换插座y,问你最多能给几个电器充电. 解法:起点向插座建边,容量1,电器向汇点建边,容量1,插座向电器建边,容量1,可以替换的插座间建边,容量无穷大.然后套板子...求最大流. 代码: #include <stdio.h> #include <ctime> #include <math.h> #include <limits.h>

POJ 1087 A Plug for UNIX(最大流dinic)

Description You are in charge of setting up the press room for the inaugural meeting of the United Nations Internet eXecutive (UNIX), which has an international mandate to make the free flow of information and ideas on the Internet as cumbersome and

POJ 1087 —— A Plug for UNIX

原题:http://poj.org/problem?id=1087 题意:n个插座,m个电器及其对应的插座,k种转化器,转换器(u,v)表示可以把原本需要u插座的电器转接到v插座上,问最少有多少设备没有插座用,每种转换器数量不限;: #include<cstdio> #include<cstring> #include<string> #include<queue> #include<vector> #include<map> #in

poj 1087.A Plug for UNIX 解题报告

网络流,关键在建图 建图思路在代码里 /* 最大流SAP 邻接表 思路:基本源于FF方法,给每个顶点设定层次标号,和允许弧. 优化: 1.当前弧优化(重要). 1.每找到以条增广路回退到断点(常数优化). 2.层次出现断层,无法得到新流(重要). 时间复杂度(m*n^2) */ #include <iostream> #include <cstdio> #include <cstring> #include <map> #define ms(a,b) mem

POJ - 1087 A Plug for UNIX (网络流)

原题链接 题意: 给定 N 个不同类型插座,每个插座只能插一个相对应的设备 : 现有 M 个人,给出每个人名字和设备的插头类型,然后给定 K 种转换器,每种转换器的数量都是无限的,每种转化器描述为: 插座类型,插头类型: 现在问至少有多少个人的设备无法插入. 思路: 一个典型的最大流问题,设定超级源点 S , 超级汇点 T ,将每种插座与 S 相连,流量为1:将所有人的插头类型统计一下,并记录数量,然后将其与汇点相连,流量为每种插头的数量: 记录所有的转换器,用 Floyd 算出 每种插头最终可