论文解读《Understanding the Effective Receptive Field in Deep Convolutional Neural Networks》

感知野的概念尤为重要,对于理解和诊断CNN网络是否工作,其中一个神经元的感知野之外的图像并不会对神经元的值产生影响,所以去确保这个神经元覆盖的所有相关的图像区域是十分重要的;
需要对输出图像的单个像素进行预测的任务,使每一个输出像素具有一个比较大的感知野是十分重要的,在做预测试时,每一个关键的信息就不会被遗漏。

增大感知野的方法: 理论上可以通过搭建更多的层的网络实现感知域的线性增加,靠着卷积过滤器的增加; 也可以使用下采样的方法,池化,增加感知域,目前通常都结合了这两种技术;

作者发现 并不是所有在感知域中的像素 都图对于输出单元具有相同的贡献: 直观的来说,感知野中间的像素对于输出会有更大的影响。
前向传播中,感知野中间的像素能够传播信息到输出通过许多不同的路径,边缘的像素就相对较少。这就造成了,在反向中,通过这些路径传来的梯度,使得中间像素有更大量级的梯度更新

感知野的影响分布是呈现高斯分布的, 作者发现了 理论感知域中的有效部分其实是非常微小的,因为高斯分布从中间衰减得十分的快

确定多少个输入感知野的像素点影响着输出神经元;
有个结论:在残差网络中不使用池化和下采样方法,随着训练的进行,有效感知野的范围在提升,同时即时感知野的大小已经大于了整个图像的整个大小,有效感知野的范围还是不能够覆盖整个图像。

在残差网络架构的模型中,使用subsampling 技术,理论感知域增加的非常大,但是有效感知域也是十分小的;

有效减缓 有效感知域的高斯分布的方法带来的影响
1 操纵权重的初始化 使卷积核中心的权值更小,外部的权值更大
优化 w 去最大化 有效感知野的大小
解决这个优化问题,就得到了这样一个解:在卷积核的4个角上平均分配权值,而其他地方都为0。
得到一些 这样分布的初始化方法 可以提高整体的速度

认为 从CNN的结构来看是一个很好的增大有效感知域的措施,比如 dilate conv,skip-connection 使得感知野更小了,dropout 并不会改变有效感知野

原文地址:https://www.cnblogs.com/ChenKe-cheng/p/11470204.html

时间: 2024-11-09 15:20:39

论文解读《Understanding the Effective Receptive Field in Deep Convolutional Neural Networks》的相关文章

ImageNet?Classification?with?Deep?Convolutional?Neural?Networks?阅读笔记 转载

ImageNet Classification with Deep Convolutional Neural Networks 阅读笔记 (2013-07-06 22:16:36) 转载▼ 标签: deep_learning imagenet hinton 分类: 机器学习 (决定以后每读一篇论文,都将笔记记录于博客上.) 这篇发表于NIPS2012的文章,是Hinton与其学生为了回应别人对于deep learning的质疑而将deep learning用于ImageNet(图像识别目前最大的

ImageNet Classification with Deep Convolutional Neural Networks(转载)

ImageNet Classification with Deep Convolutional Neural Networks 阅读笔记 (决定以后每读一篇论文,都将笔记记录于博客上.) 这篇发表于NIPS2012的文章,是Hinton与其学生为了回应别人对于deep learning的质疑而将deep learning用于ImageNet(图像识别目前最大的数据库)上,最终取得了非常惊人的结果,其结果相对原来的state of the art好了非常多(前5选错误率由25%降低为17%). I

2016.4.5 ImageNet Classification with Deep Convolutional Neural Networks

ImageNet Classification with Deep Convolutional Neural Networks http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf 这个网络也叫做alexnet,因为第一作者的名字是alex,这是个经典的网络,因为这个网络在12年的时候在imagenet上面提升了十个点的准确率.第三作者是hinton

【Papers】《ImageNet Classification with Deep Convolutional Neural Networks》阅读笔记

参考资料: ImageNet Classification with Deep Convolutional Neural Networks,Alex Krizhevsky,Ilya Sutskever,Geoffrey E. Hinton http://www.cnblogs.com/tornadomeet/p/3258122.html http://blog.sina.com.cn/s/blog_890c6aa30100z7su.html

ImageNet Classification with Deep Convolutional Neural Networks

ImageNet Classification with Deep Convolutional Neural Networks Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton 摘要 我们训练了一个大型的深度卷积神经网络,来将在ImageNet LSVRC-2010大赛中的120万张高清图像分为1000个不同的类别.对测试数据,我们得到了top-1误差率37.5%,以及top-5误差率17.0%,这个效果比之前最顶尖的都要好得多.该神经网络有

中文版 ImageNet Classification with Deep Convolutional Neural Networks

ImageNet Classification with Deep Convolutional Neural Networks 摘要 我们训练了一个大型深度卷积神经网络来将ImageNet LSVRC-2010竞赛的120万高分辨率的图像分到1000不同的类别中.在测试数据上,我们得到了top-1 37.5%, top-5 17.0%的错误率,这个结果比目前的最好结果好很多.这个神经网络有6000万参数和650000个神经元,包含5个卷积层(某些卷积层后面带有池化层)和3个全连接层,最后是一个1

论文解读《ImageNet Classification with Deep Convolutional Neural Networks》

这篇论文提出了AlexNet,奠定了深度学习在CV领域中的地位. 1. ReLu激活函数 2. Dropout 3. 数据增强 减小过拟合(Reducing Overfitting) 动机:由于整个网络拥有6000万个参数:尽管ILSVRC的1000个类使得每个训练示例对从图像到标签的映射施加10位约束,十分有必要去考虑过拟合的问题. 数据扩充(Data Augmentation) 图像数据扩充,即人工的扩大数据集, 是减小过拟合现象最简单和常用的方法,作者使用两者不同的数据扩充方法: --第一

论文笔记--AlexNet--ImageNet Classification with Deep Convolutional Neural Networks

Datasets: LabelMe: consists of hundreds of thousands of fully-segmented images ImageNet: consists of over 15 million labeled high-resolution images in over 22000 categories 这篇论文使用的数据集是ImageNet 多余的话: ImageNet包含超过1500 0000张的已标记的高清晰度图片,这些图片大约有22000类.这些图

《ImageNet Classification with Deep Convolutional Neural Networks》 剖析

CNN 领域的经典之作, 作者训练了一个面向数量为 1.2 百万的高分辨率的图像数据集ImageNet, 图像的种类为1000 种的深度卷积神经网络.并在图像识别的benchmark数据集上取得了卓越的成绩. 该神经网络有6千万个参数,650,000个神经元.包含了五个卷积层(卷积操作层和下采样层统称之为卷积层), 和三个全连接层. 为了使得训练更快,让网络实现在GPU上进行卷积操作运算,为了减小overfitting, 全连接层引入一个最近兴起的方法:dropout.下面是整个网络的大致介绍:

AlexNet:ImageNet Classification with Deep Convolutional Neural Networks

论文理解  在ImageNet LSVRC-2010上首次使用大型深度卷积神经网络,并获得很好的成果. 数据集:ILSVRC使用ImageNet的一个子集,1000个类别每个类别大约1000张图像.总计,大约120万训练图像,50000张验证图像和15万测试图像. 网络架构:5个卷积层和3个全连接层另外还有无权重的池化层. 激活函数使用了ReLU非线性函数,大大加快了训练时间. 训练方式采用多GPU训练,基于GPU跨GPU并行性好的特点,如翻译中的图2所示,GPU分工明确,只在某些层有数据的交互