对比Excel学Python(二)数据可视化

就是利用Python生成各种图表,也是本书的核心。

1、条形图

#导入要用的matplotlib库import matplotlib.pyplot as plt
import numpy as np#解决乱码问题
plt.rcParams["font.sans-serif"]=‘SimHei‘#(在Y轴上分为1等份,在X轴上分为1等份,画布位于1象限)plt.subplot(1,1,1)
#传入基础数据
x = np.array(["东区","南区","西区","北区"])
y1 = np.array([7566,6555,5335,6310])
y2 = np.array([4500,4555,3335,5310])
#设置基本属性
plt.title("柱线图",loc="center")
plt.xlabel("分区")
plt.ylabel("任务量")
plt.barh(x,height=0.5,label = "任务量",width = y1)
#显示图例
plt.legend()#不显示网格
plt.grid(False)
#迭代赋值
for a,b in zip(x,y1):
    plt.text(b,a,a,ha="center",va="bottom",fontsize = 12)#将图片存入桌面
plt.savefig(r"C:\Users\admin\Desktop\新建文件夹\条形图")

2、折线图

#折线图
import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline
plt.rcParams["font.sans-serif"]=‘SimHei‘
plt.subplot(1,1,1)
# plt.subplots(1,1)
plt.xlabel("月份",)
plt.ylabel("注册量")
# plt.xticks(ticks,labels)
# plt.yticks(ticks,labels)
# plt.xticks(np.arange(12),["0","1月份","2月份","3月份","4月份","5月份","6月份","7月份","8月份","9月份","10月份","11月份"])
# plt.yticks(np.arange(1000,7000,1000),["1000人","2000人","3000人","4000人","5000人","6000人","7000","8000"])
plt.xticks(np.arange(12))

x = np.array([1,2,3,4,5,6,7,8,9,10,11])
y = np.array([866,2335,5710,6482,6120,1605,3813,4428,4631,1001,1002])
plt.plot(x,y,color = "r",linestyle = "dashdot",linewidth = 1,marker = "v",markersize = 5,label = "注册用户数")
#          linewidth = 1,marker = "o",)
plt.title("XXX公司1-9月注册用户量",loc = "center")
for a,b in zip(x,y):
    plt.text(a,b,b,ha=‘center‘,va = ‘bottom‘,fontsize = 10)

plt.grid(b = True)
plt.legend()
# plt.savefig(r"C:\Users\admin\Desktop\新建文件夹\折线图")

3、气泡图

#气泡图
import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline
plt.rcParams["font.sans-serif"]=‘SimHei‘
plt.subplot(1,1,1)
plt.xlabel("月份",)
plt.ylabel("注册量")
plt.title("XXX公司1-9月注册用户量",loc = "center")
x = np.array([1,2,3,4,5,6,7,8,9,10,11])
y = np.array([6,35,10,82,20,15,13,28,31,10,12])
# colors = y*10    #无用?
area = y*20
plt.scatter(x,y,marker = "o",s = area)
for a,b in zip(x,y):
    plt.text(a,b,b,ha=‘center‘,va = ‘center‘,fontsize = 12,color = "white")

plt.savefig(r"C:\Users\admin\Desktop\新建文件夹\气泡图")

4、柱形图-堆积图

#柱形图
import matplotlib.pyplot as plt
import numpy as np
plt.rcParams["font.sans-serif"]=‘SimHei‘
plt.subplot(1,1,1)

# x = np.array(["东区","南区","西区","北区"])
x = np.array([1,2,3,4])
plt.xticks(x+0.1,["东区","南区","西区","北区"])
y1 = np.array([7566,6555,5335,6310])
y2 = np.array([4500,4555,3335,5310])

plt.title("柱线图",loc="center")
plt.xlabel("分区")
plt.ylabel("任务量")
plt.bar(x,y1,label = "任务量",width = 0.3)
# plt.bar(x+0.3,y2,label = "完成量",width = 0.3)
plt.bar(x,y2,label = "完成量",width = 0.3)
plt.legend()
plt.grid(False)

for a,b in zip(x,y1):
    plt.text(a,b,b,ha="center",va="bottom",fontsize = 12)
# for a,b in zip(x+0.3,y2):
#     plt.text(a,b,b,ha="center",va="bottom",fontsize = 12)
for a,b in zip(x,y2):
    plt.text(a,b,b,ha="center",va="bottom",fontsize = 12)
# plt.savefig(r"C:\Users\admin\Desktop\新建文件夹\柱形图")
plt.savefig(r"C:\Users\admin\Desktop\新建文件夹\堆积图")

5、面积图

#面积图
import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline
plt.rcParams["font.sans-serif"]=‘SimHei‘
plt.subplot(1,1,1)
plt.xlabel("月份",)
plt.ylabel("注册量")
plt.title("XXX公司1-9月注册用户量",loc = "center")
x = np.array([1,2,3,4,5,6])
y1 = np.array([6360,6555,5335,6310,5357,6666])
y2 = np.array([4500,4555,3335,5310,4444,5674])
plt.stackplot(x,y1,y2)
plt.savefig(r"C:\Users\admin\Desktop\新建文件夹\面积图")

6、树地图

#树地图
#squarify.plot(size,label,color,value,edgecolor,linewidth)r
import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline
plt.rcParams["font.sans-serif"]=‘SimHei‘
import squarify

size = np.array([3.4,0.693,0.585,0.570,0.562,0.531,0.530,0.524,0.501,0.478,0.468,0.436])
xingzuo = np.array(["未知","摩揭座","天秤座","双鱼座","天竭座","金牛座",
                  "处女座","双子座","射手座","狮子座","水瓶座","白羊座"])
rate = np.array([‘34%‘,‘6.93%‘,"5.85%","5.70%","5.62%","5.31%","5.30%","5.24%","5.01%","4.78%","4.68%","4.36%"])
colors = [‘steelblue‘,‘#9999ff‘,‘red‘,‘indianred‘,‘green‘,‘yellow‘,‘orange‘]
plot = squarify.plot(sizes = size,
                    label = xingzuo,
                    color = colors,
                    value = rate,
                    edgecolor = "white",
                    linewidth = 3)
plt.title("星座",fontdict = {‘fontsize‘:12})
plt.axis("off")
# plt.tick_params(top = ‘off‘,right = ‘off‘)
plt.savefig(r"C:\Users\admin\Desktop\新建文件夹\树地图")

7、饼图

import matplotlib.pyplot as plt
import numpy as np
x = np.array([5555,6666,7777,8888])
labels = ["A","B","C","D"]
explode = [0.1,0,0,0]
labeldistance = 1.1
plt.pie(x,labels=labels,autopct=‘%.1f%%‘,shadow=True,explode = explode,radius=1.0,labeldistance=labeldistance)
#        explode = explode,radius=1.0,labeldistance=labeldistance)   #错误示范

8、双环形图

这个是从网上找的案例,一起总结在一块。

import matplotlib as mpl
import matplotlib.pyplot as plt

# 设置图片大小
plt.figure(figsize = (10, 8))

# 生成数据
labels = [‘A‘, ‘B‘, ‘C‘, ‘D‘, ‘其他‘]
share_laptop = [0.45, 0.25, 0.15, 0.05, 0.10]
share_pc = [0.35, 0.35, 0.08, 0.07, 0.15]
colors = [‘c‘, ‘r‘, ‘y‘, ‘g‘, ‘gray‘]

# 外环
wedges1, texts1, autotexts1 = plt.pie(share_laptop,
    autopct = ‘%3.1f%%‘,
    radius = 1,
    pctdistance = 0.85,
    colors = colors,
    startangle = 180,
    textprops = {‘color‘: ‘w‘},
    wedgeprops = {‘width‘: 0.3, ‘edgecolor‘: ‘w‘}
)

# 内环
wedges2, texts2, autotexts2 = plt.pie(share_pc,
    autopct = ‘%3.1f%%‘,
    radius = 0.7,
    pctdistance = 0.75,
    colors = colors,
    startangle = 180,
    textprops = {‘color‘: ‘w‘},
    wedgeprops = {‘width‘: 0.3, ‘edgecolor‘: ‘w‘}
)

# 图例
plt.legend(wedges1,
          labels,
          fontsize = 12,
          title = ‘公司列表‘,
          loc = ‘center right‘,
          bbox_to_anchor = (1, 0.6))

# 设置文本样式
plt.setp(autotexts1, size=15, weight=‘bold‘)
plt.setp(autotexts2, size=15, weight=‘bold‘)
plt.setp(texts1, size=15)

# 标题
plt.title(‘2017年笔记本及PC电脑市场份额‘, fontsize=20)
plt.savefig(r"C:\Users\admin\Desktop\新建文件夹\环形图")
plt.show()

原文地址:https://www.cnblogs.com/zc-beyond/p/11032635.html

时间: 2024-10-12 14:06:54

对比Excel学Python(二)数据可视化的相关文章

谈谈Python实战数据可视化之pygal模块(实战篇)

前沿 通过上一节谈谈Python实战数据可视化之pygal模块(基础篇)的学习,我们对pygal模块的使用有了初步的了解,本节将以实战项目来加深pygal模块的使用.从网上可以下载JSON格式的人口数据,并使用json模块来处理它们,pygal模块提供了一个适合初学者使用的地图创建工具,我们将使用它来对人口数据进行可视化,以探索全球人口的分布情况.针对JSON格式的人口数据文件,可以通过谈谈Python实战数据可视化之matplotlib模块(实战篇)章节的配套资源来下载.对于本人在学习和编码过

Python - matplotlib 数据可视化

在许多实际问题中,经常要对给出的数据进行可视化,便于观察. 今天专门针对Python中的数据可视化模块--matplotlib这块内容系统的整理,方便查找使用. 本文来自于对<利用python进行数据分析>以及网上一些博客的总结. 1  matplotlib简介 matplotlib是Pythom可视化程序库的泰斗,经过几十年它仍然是Python使用者最常用的画图库.有许多别的程序库都是建立在它的基础上或直接调用它,比如pandas和seaborn就是matplotlib的外包, 它们让你使用

谈谈Python实战数据可视化之pyplot模块

前沿 Python提供了很多模块用于数据可视化,其中有matplotlib.pygal.我参考网上热门书籍<Python编程从入门到实战>,在测试与学习过程中遇到的些许问题加以解决,才写下这一项目实战的心得,对于Python基础部分就不细讲,主要是项目核心要点和解决方案的描述.本小节先讲述pyplot模块的基本使用. 新手的建议 针对新手,真心觉得不要直接使用Python下载来的IDLE来开发,因为功能太少了,也不好使用.我的建议是对于Python初学者,先安装Anaconda,这是一个基于P

基于Python的数据可视化库pyecharts介绍

什么是pyecharts? pyecharts 是一个用于生成 Echarts 图表的类库. echarts 是百度开源的一个数据可视化 JS 库,主要用于数据可视化.pyecharts 是一个用于生成 Echarts 图表的类库.实际上就是 Echarts 与 Python 的对接. 使用 pyecharts 可以生成独立的网页,也可以在 flask , Django 中集成使用.pyecharts包含的图表 Bar .Bar3D.Boxplot.EffectScatter .Funnel.G

Python图表数据可视化Seaborn:3. 线性关系| 时间线| 热图

1. 线性关系数据可视化 lmplot() import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns % matplotlib inline sns.set_style("darkgrid") sns.set_context("paper") # 设置风格.尺度 import warnings warnings.filterwarnings

Python图表数据可视化Seaborn:2. 分类数据可视化

1. 分类数据可视化 - 分类散点图 stripplot() / swarmplot() import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns % matplotlib inline sns.set_style("whitegrid") sns.set_context("paper") # 设置风格.尺度 import warnings

【python数据分析实战】电影票房数据分析(二)数据可视化

目录 图1 每年的月票房走势图 图2 年票房总值.上映影片总数及观影人次 图3 单片总票房及日均票房 图4 单片票房及上映月份关系图 在上一部分<[python数据分析实战]电影票房数据分析(一)数据采集> 已经获取到了2011年至今的票房数据,并保存在了mysql中. 本文将在实操中讲解如何将mysql中的数据抽取出来并做成动态可视化. 图1 每年的月票房走势图 第一张图,我们要看一下每月的票房走势,毫无疑问要做成折线图,将近10年的票房数据放在一张图上展示. 数据抽取: 采集到的票房数据是

Python进行数据可视化的9种常见方法,总有一种是你要用的

其实利用 Python 可视化数据并不是很麻烦,因为 Python 中有两个专用于可视化的库 matplotlib 和 seaborn 能让我们很容易的完成任务. 我们用 Python 可以做出哪些可视化图形? 当你给别人一个表格比如: 这个表给别人看起来,既不舒服,也不好观看.最最最最最最重要的一点就是low! 在学习过程中有什么不懂得可以加我的 python学习交流扣扣qun,784758214 群里有不错的学习视频教程.开发工具与电子书籍. 与你分享python企业当下人才需求及怎么从零基

python项目---数据可视化(02)

今天编写程序时,发现了一个有趣的现象.当执行import语句时,运行以后,将会脚本目录下生成一个__pycache__文件.于是做了如下总结解释: 一. python基本运行机制 Python程序运行时不需要编译成二进制代码,而直接从源码运行程序,简单来说是,Python解释器将源码转换为字节码,然后再由解释器来执行这些字节码. 解释器的具体工作: 1 完成模块的加载和链接: 2 将源代码编译为PyCodeObject对象(即字节码),写入内存中,供CPU读取: 3 从内存中读取并执行,结束后将