【机器学习】Sklearn库主成分分析PCA降维的运用实战

1、PCA分类介绍
在scikit-learn中,与PCA相关的类都在sklearn.decomposition包中。最常用的PCA类就是sklearn.decomposition.PCA。

原理:线性映射(或线性变换),简单的来说就是将高维空间数据投影到低维空间上,那么在数据分析上,我们是将数据的主成分(包含信息量大的维度)保留下来,忽略掉对数据描述不重要的成分。即将主成分维度组成的向量空间作为低维空间,将高维数据投影到这个空间上就完成了降维的工作。

除了PCA类以外,最常用的PCA相关类还有KernelPCA类,在原理篇我们也讲到了,它主要用于非线性数据的降维,需要用到核技巧。因此在使用的时候需要选择合适的核函数并对核函数的参数进行调参。

另外一个常用的PCA相关类是IncrementalPCA类,它主要是为了解决单机内存限制的。有时候我们的样本量可能是上百万+,维度可能也是上千,直接去拟合数据可能会让内存爆掉, 此时我们可以用IncrementalPCA类来解决这个问题。IncrementalPCA先将数据分成多个batch,然后对每个batch依次递增调用partial_fit函数,这样一步步的得到最终的样本最优降维。

此外还有SparsePCA和MiniBatchSparsePCA。他们和上面讲到的PCA类的区别主要是使用了L1的正则化,这样可以将很多非主要成分的影响度降为0,这样在PCA降维的时候我们仅仅需要对那些相对比较主要的成分进行PCA降维,避免了一些噪声之类的因素对我们PCA降维的影响。SparsePCA和MiniBatchSparsePCA之间的区别则是MiniBatchSparsePCA通过使用一部分样本特征和给定的迭代次数来进行PCA降维,以解决在大样本时特征分解过慢的问题,当然,代价就是PCA降维的精确度可能会降低。使用SparsePCA和MiniBatchSparsePCA需要对L1正则化参数进行调参。

2、sklearn.decomposition.PCA参数介绍
PCA类基本不需要调参,一般来说,我们只需要指定我们需要降维到的维度,或者我们希望降维后的主成分的方差和占原始维度所有特征方差和的比例阈值就可以了。
一、关于参数
n_components:
意义:PCA算法中所要保留的主成分个数n,也即保留下来的特征个数n
类型:int 或者 string,缺省时默认为None,所有成分被保留。
赋值为int,比如n_components=1,将把原始数据降到一个维度。
当然,我们也可以指定主成分的方差和所占的最小比例阈值,让PCA类自己去根据样本特征方差来决定降维到的维度数,此时n_components是一个(0,1]之间的数。
赋值为string,比如n_components=’mle’,将自动选取特征个数n,使得满足所要求的方差百分比。
copy:
类型:bool,True或者False,缺省时默认为True。
意义:表示是否在运行算法时,将原始训练数据复制一份。若为True,则运行PCA算法后,原始训练数据的值不会有任何改变,因为是在原始数据的副本上进行运算;若为False,则运行PCA算法后,原始训练数据的值会改,因为是在原始数据上进行降维计算。
whiten:
类型:bool,缺省时默认为False
意义:白化。

二、PCA对象属性
components_:返回具有最大方差的成分。
explained_variance_ratio_:返回 所保留的n个成分各自的方差百分比。
n_components_:返回所保留的成分个数n。

四、PCA对象属性
fit(X,y=None)
fit()可以说是scikit-learn中通用的方法,每个需要训练的算法都会有fit()方法,它其实就是算法中的“训练”这一步骤。因为PCA是无监督学习算法,此处y自然等于None。
fit(X),表示用数据X来训练PCA模型。函数返回值:调用fit方法的对象本身。比如pca.fit(X),表示用X对pca这个对象进行训练。
fit_transform(X)
用X来训练PCA模型,同时返回降维后的数据。
newX=pca.fit_transform(X),newX就是降维后的数据。
inverse_transform()
将降维后的数据转换成原始数据,X=pca.inverse_transform(newX)
transform(X)
将数据X转换成降维后的数据。当模型训练好后,对于新输入的数据,都可以用transform方法来降维。

3、PCA实例
下面我们首先用一个简单实例来学习下scikit-learn中的PCA类使用。为了方便的可视化让大家有一个直观的认识,我们这里使用了三维的数据来降维。首先我们生成随机数据并可视化,代码如下:

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from sklearn.datasets.samples_generator import make_blobs
import matplotlib.pyplot as plt
#X为样本特征,Y为样本簇类别, 共1000个样本,每个样本3个特征,共4个簇
X, y = make_blobs(n_samples=10000, n_features=3, centers=[[3,3, 3], [0,0,0], [1,1,1], [2,2,2]], cluster_std=[0.2, 0.1, 0.2, 0.2],
random_state =9)
fig = plt.figure()
ax = Axes3D(fig, rect=[0, 0, 1, 1], elev=30, azim=20)
plt.scatter(X[:, 0], X[:, 1], X[:, 2],marker=‘o‘)
#先不降维,只对数据进行投影,看看投影后的三个维度的方差分布
from sklearn.decomposition import PCA
pca = PCA(n_components=3)
pca.fit(X)
#返回所保留的n个成分各自的方差百分比
print(pca.explained_variance_ratio_)
print(pca.explained_variance_)
#进行降维,从三维降到2维
pca1 = PCA(n_components=2)
pca1.fit(X)
print(pca1.explained_variance_ratio_)
print(pca1.explained_variance_)
#返回所保留的n个成分各自的方差百分比
print(pca1.explained_variance_ratio_)
print(pca1.explained_variance_)
‘‘‘通过对比,因为上面三个投影后的特征维度的方差分别为:
[ 3.78483785 0.03272285 0.03201892],投影到二维后选择的肯定是前两个特征,而抛弃第三个特征‘‘‘
#将降维后的2维数据进行可视化
X_new = pca1.transform(X)
plt.scatter(X_new[:, 0], X_new[:, 1],marker=‘o‘)
plt.show()

与原文有点不同我使用的是pca.fit_transform(x)这个方法

  

4、PCA算法总结

作为一个非监督学习的降维方法,它只需要特征值分解,就可以对数据进行压缩,去噪。因此在实际场景应用很广泛。为了克服PCA的一些缺点,出现了很多PCA的变种,比如第六节的为解决非线性降维的KPCA,还有解决内存限制的增量PCA方法Incremental PCA,以及解决稀疏数据降维的PCA方法Sparse PCA等。

    PCA算法的主要优点有:

    1)仅仅需要以方差衡量信息量,不受数据集以外的因素影响。 

    2)各主成分之间正交,可消除原始数据成分间的相互影响的因素。

    3)计算方法简单,主要运算是特征值分解,易于实现。

    PCA算法的主要缺点有:

    1)主成分各个特征维度的含义具有一定的模糊性,不如原始样本特征的解释性强。

    2)方差小的非主成分也可能含有对样本差异的重要信息,因降维丢弃可能对后续数据处理有影响。
————————————————

原文链接:https://blog.csdn.net/brucewong0516/article/details/78666763

原文地址:https://www.cnblogs.com/blogwangwang/p/11520361.html

时间: 2024-08-05 02:18:16

【机器学习】Sklearn库主成分分析PCA降维的运用实战的相关文章

[机器学习之13]降维技术——主成分分析PCA

始终贯彻数据分析的一个大问题就是对数据和结果的展示,我们都知道在低维度下数据处理比较方便,因而数据进行简化成为了一个重要的技术.对数据进行简化的原因: 1.使得数据集更易用使用.2.降低很多算法的计算开销.3.去除噪音.4.使得结果易懂 这里我们关心的数据降维技术为主成分分析(PCA).在PCA中,数据原来的坐标系转换成了新的坐标系,新的坐标系是由数据本身决定的.第一个新的坐标轴的选择是原始数据中方差最大的方向,第二个新的坐标轴的选择和第一个坐标轴正交且具有最大方差方向.这个过程一直重复,重复次

【机器学习算法-python实现】PCA 主成分分析、降维

1.背景 PCA(Principal Component Analysis),PAC的作用主要是降低数据集的维度,然后挑选出主要的特征. PCA的主要思想是移动坐标轴,找到方差最大的方向上的特征值,什么叫方差最大的方向的特征值呢.就像下图中的曲线B,一样,它的覆盖范围最广. 基本步骤:(1)首先计算数据集的协方差矩阵 (2)计算协方差矩阵的特征值和特征向量 (3)保留最重要的n个特征 what is 协方差矩阵: 定义是变量向量减去均值向量,然后乘以变量向量减去均值向量的转置再求均值.例如x是变

机器学习之路:python 特征降维 主成分分析 PCA

python3 学习api使用 主成分分析方法实现降低维度 使用了网络上的数据集,我已经下载到了本地,可以去我的git上参考 git:https://github.com/linyi0604/MachineLearning 代码: 1 from sklearn.svm import LinearSVC 2 from sklearn.metrics import classification_report 3 from sklearn.decomposition import PCA 4 impo

[python机器学习及实践(6)]Sklearn实现主成分分析(PCA)

1.PCA原理 主成分分析(Principal Component Analysis,PCA), 是一种统计方法.通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分. PCA算法: 2.PCA的实现 数据集: 64维的手写数字图像 代码: #coding=utf-8 import numpy as np import pandas as pd from sklearn.decomposition import PCA from matplotlib imp

机器学习——降维(主成分分析PCA、线性判别分析LDA、奇异值分解SVD、局部线性嵌入LLE)

机器学习--降维(主成分分析PCA.线性判别分析LDA.奇异值分解SVD.局部线性嵌入LLE) 以下资料并非本人原创,因为觉得石头写的好,所以才转发备忘 (主成分分析(PCA)原理总结)[https://mp.weixin.qq.com/s/XuXK4inb9Yi-4ELCe_i0EA] 来源:?石头?机器学习算法那些事?3月1日 主成分分析(Principal components analysis,以下简称PCA)是最常用的降维方法之一,在数据压缩和消除冗余方面具有广泛的应用,本文由浅入深的

机器学习 —— 基础整理(四):特征提取之线性方法——主成分分析PCA、独立成分分析ICA、线性判别分析LDA

本文简单整理了以下内容: (一)维数灾难 (二)特征提取--线性方法 1. 主成分分析PCA 2. 独立成分分析ICA 3. 线性判别分析LDA (一)维数灾难(Curse of dimensionality) 维数灾难就是说当样本的维数增加时,若要保持与低维情形下相同的样本密度,所需要的样本数指数型增长.从下面的图可以直观体会一下.当维度很大样本数量少时,无法通过它们学习到有价值的知识:所以需要降维,一方面在损失的信息量可以接受的情况下获得数据的低维表示,增加样本的密度:另一方面也可以达到去噪

机器学习算法-PCA降维技术

机器学习算法-PCA降维 一.引言 在实际的数据分析问题中我们遇到的问题通常有较高维数的特征,在进行实际的数据分析的时候,我们并不会将所有的特征都用于算法的训练,而是挑选出我们认为可能对目标有影响的特征.比如在泰坦尼克号乘员生存预测的问题中我们会将姓名作为无用信息进行处理,这是我们可以从直观上比较好理解的.但是有些特征之间可能存在强相关关系,比如研究一个地区的发展状况,我们可能会选择该地区的GDP和人均消费水平这两个特征作为一个衡量指标.显然这两者之间是存在较强的相关关系,他们描述的都是该地区的

sklearn pca降维

PCA降维 一.原理 这篇文章总结的不错PCA的数学原理. PCA主成分分析是将原始数据以线性形式映射到维度互不相关的子空间.主要就是寻找方差最大的不相关维度.数据的最大方差给出了数据的最重要信息. 二.优缺点 优:将高维数据映射到低维,降低数据的复杂性,识别最重要的多个特征 不足:不一定需要,且可能损失有用信息 适用数值型数据 三.步骤 1.原始数据X,对于每列属性,去平均值(也可以对数值进行标准分化) 2.计算样本点的协方差矩阵(列间两两计算相关性) 3.求出协方差矩阵的特征值和对应的特征向

机器学习中的数学(4)-线性判别分析(LDA), 主成分分析(PCA)

机器学习中的数学(4)-线性判别分析(LDA), 主成分分析(PCA) 版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系[email protected] 前言: 第二篇的文章中谈到,和部门老大一宁出去outing的时候,他给了我相当多的机器学习的建议,里面涉及到很多的算法的意义.学习方法等等.一宁上次给我提到,如果学习分类算法,最好从线性的入手,线性分类器最简单的就是