距离度量以及python实现(一)

转自: https://www.cnblogs.com/denny402/p/7027954.html

1. 欧氏距离(Euclidean Distance)
       欧氏距离是最易于理解的一种距离计算方法,源自欧氏空间中两点间的距离公式。
(1)二维平面上两点a(x1,y1)与b(x2,y2)间的欧氏距离:

(2)三维空间两点a(x1,y1,z1)与b(x2,y2,z2)间的欧氏距离:

(3)两个n维向量a(x11,x12,…,x1n)与 b(x21,x22,…,x2n)间的欧氏距离:

(4)也可以用表示成向量运算的形式:

python中的实现:

方法一:

import numpy as np
x=np.random.random(10)
y=np.random.random(10)

#方法一:根据公式求解
d1=np.sqrt(np.sum(np.square(x-y)))

#方法二:根据scipy库求解
from scipy.spatial.distance import pdist
X=np.vstack([x,y])
d2=pdist(X)

2. 曼哈顿距离(Manhattan Distance)
       从名字就可以猜出这种距离的计算方法了。想象你在曼哈顿要从一个十字路口开车到另外一个十字路口,驾驶距离是两点间的直线距离吗?显然不是,除非你能穿越大楼。实际驾驶距离就是这个“曼哈顿距离”。而这也是曼哈顿距离名称的来源, 曼哈顿距离也称为城市街区距离(City Block distance)
(1)二维平面两点a(x1,y1)与b(x2,y2)间的曼哈顿距离

(2)两个n维向量a(x11,x12,…,x1n)与 b(x21,x22,…,x2n)间的曼哈顿距离

python中的实现 :

import numpy as np
x=np.random.random(10)
y=np.random.random(10)

#方法一:根据公式求解
d1=np.sum(np.abs(x-y))

#方法二:根据scipy库求解
from scipy.spatial.distance import pdist
X=np.vstack([x,y])
d2=pdist(X,‘cityblock‘)

3. 切比雪夫距离 ( Chebyshev Distance )
       国际象棋玩过么?国王走一步能够移动到相邻的8个方格中的任意一个。那么国王从格子(x1,y1)走到格子(x2,y2)最少需要多少步?自己走走试试。你会发现最少步数总是max( | x2-x1 | , | y2-y1 | ) 步 。有一种类似的一种距离度量方法叫切比雪夫距离。
(1)二维平面两点a(x1,y1)与b(x2,y2)间的切比雪夫距离

(2)两个n维向量a(x11,x12,…,x1n)与 b(x21,x22,…,x2n)间的切比雪夫距离

  这个公式的另一种等价形式是

       看不出两个公式是等价的?提示一下:试试用放缩法和夹逼法则来证明。

在python中的实现:

import numpy as np
x=np.random.random(10)
y=np.random.random(10)

#方法一:根据公式求解
d1=np.max(np.abs(x-y))

#方法二:根据scipy库求解
from scipy.spatial.distance import pdist
X=np.vstack([x,y])
d2=pdist(X,‘chebyshev‘)

4. 闵可夫斯基距离(Minkowski Distance)
闵氏距离不是一种距离,而是一组距离的定义。
(1) 闵氏距离的定义
       两个n维变量a(x11,x12,…,x1n)与 b(x21,x22,…,x2n)间的闵可夫斯基距离定义为:

也可写成

其中p是一个变参数。
当p=1时,就是曼哈顿距离
当p=2时,就是欧氏距离
当p→∞时,就是切比雪夫距离
       根据变参数的不同,闵氏距离可以表示一类的距离。
(2)闵氏距离的缺点
  闵氏距离,包括曼哈顿距离、欧氏距离和切比雪夫距离都存在明显的缺点。
  举个例子:二维样本(身高,体重),其中身高范围是150~190,体重范围是50~60,有三个样本:a(180,50),b(190,50),c(180,60)。那么a与b之间的闵氏距离(无论是曼哈顿距离、欧氏距离或切比雪夫距离)等于a与c之间的闵氏距离,但是身高的10cm真的等价于体重的10kg么?因此用闵氏距离来衡量这些样本间的相似度很有问题。
       简单说来,闵氏距离的缺点主要有两个:(1)将各个分量的量纲(scale),也就是“单位”当作相同的看待了。(2)没有考虑各个分量的分布(期望,方差等)可能是不同的。

python中的实现:

import numpy as np
x=np.random.random(10)
y=np.random.random(10)

#方法一:根据公式求解,p=2
d1=np.sqrt(np.sum(np.square(x-y)))

#方法二:根据scipy库求解
from scipy.spatial.distance import pdist
X=np.vstack([x,y])
d2=pdist(X,‘minkowski‘,p=2)

5. 标准化欧氏距离 (Standardized Euclidean distance )
(1)标准欧氏距离的定义
  标准化欧氏距离是针对简单欧氏距离的缺点而作的一种改进方案。标准欧氏距离的思路:既然数据各维分量的分布不一样,好吧!那我先将各个分量都“标准化”到均值、方差相等吧。均值和方差标准化到多少呢?这里先复习点统计学知识吧,假设样本集X的均值(mean)为m,标准差(standard deviation)为s,那么X的“标准化变量”表示为:

  标准化后的值 =  ( 标准化前的值  - 分量的均值 ) /分量的标准差
  经过简单的推导就可以得到两个n维向量a(x11,x12,…,x1n)与 b(x21,x22,…,x2n)间的标准化欧氏距离的公式:

  如果将方差的倒数看成是一个权重,这个公式可以看成是一种加权欧氏距离(Weighted Euclidean distance)

python中的实现:

import numpy as np
x=np.random.random(10)
y=np.random.random(10)

X=np.vstack([x,y])

#方法一:根据公式求解
sk=np.var(X,axis=0,ddof=1)
d1=np.sqrt(((x - y) ** 2 /sk).sum())

#方法二:根据scipy库求解
from scipy.spatial.distance import pdist
d2=pdist(X,‘seuclidean‘)

6. 马氏距离(Mahalanobis Distance)
(1)马氏距离定义
       有M个样本向量X1~Xm,协方差矩阵记为S,均值记为向量μ,则其中样本向量X到u的马氏距离表示为:

       而其中向量Xi与Xj之间的马氏距离定义为:

       若协方差矩阵是单位矩阵(各个样本向量之间独立同分布),则公式就成了:

       也就是欧氏距离了。
  若协方差矩阵是对角矩阵,公式变成了标准化欧氏距离。
python 中的实现:

import numpy as np
x=np.random.random(10)
y=np.random.random(10)

#马氏距离要求样本数要大于维数,否则无法求协方差矩阵
#此处进行转置,表示10个样本,每个样本2维
X=np.vstack([x,y])
XT=X.T

#方法一:根据公式求解
S=np.cov(X)   #两个维度之间协方差矩阵
SI = np.linalg.inv(S) #协方差矩阵的逆矩阵
#马氏距离计算两个样本之间的距离,此处共有10个样本,两两组合,共有45个距离。
n=XT.shape[0]
d1=[]
for i in range(0,n):
    for j in range(i+1,n):
        delta=XT[i]-XT[j]
        d=np.sqrt(np.dot(np.dot(delta,SI),delta.T))
        d1.append(d)

#方法二:根据scipy库求解
from scipy.spatial.distance import pdist
d2=pdist(XT,‘mahalanobis‘)

 

马氏优缺点:

1)马氏距离的计算是建立在总体样本的基础上的,这一点可以从上述协方差矩阵的解释中可以得出,也就是说,如果拿同样的两个样本,放入两个不同的总体中,最后计算得出的两个样本间的马氏距离通常是不相同的,除非这两个总体的协方差矩阵碰巧相同;

2)在计算马氏距离过程中,要求总体样本数大于样本的维数,否则得到的总体样本协方差矩阵逆矩阵不存在,这种情况下,用欧式距离计算即可。

3)还有一种情况,满足了条件总体样本数大于样本的维数,但是协方差矩阵的逆矩阵仍然不存在,比如三个样本点(3,4),(5,6)和(7,8),这种情况是因为这三个样本在其所处的二维空间平面内共线。这种情况下,也采用欧式距离计算。

4)在实际应用中“总体样本数大于样本的维数”这个条件是很容易满足的,而所有样本点出现3)中所描述的情况是很少出现的,所以在绝大多数情况下,马氏距离是可以顺利计算的,但是马氏距离的计算是不稳定的,不稳定的来源是协方差矩阵,这也是马氏距离与欧式距离的最大差异之处。

优点:它不受量纲的影响,两点之间的马氏距离与原始数据的测量单位无关;由标准化数据和中心化数据(即原始数据与均值之差)计算出的二点之间的马氏距离相同。马氏距离还可以排除变量之间的相关性的干扰。缺点:它的缺点是夸大了变化微小的变量的作用。

参考:

http://www.cnblogs.com/daniel-D/p/3244718.html

http://www.cnblogs.com/likai198981/p/3167928.html

原文地址:https://www.cnblogs.com/jiangkejie/p/11595905.html

时间: 2024-10-07 11:30:44

距离度量以及python实现(一)的相关文章

概率分布之间的距离度量以及python实现

1. 欧氏距离(Euclidean Distance)       欧氏距离是最易于理解的一种距离计算方法,源自欧氏空间中两点间的距离公式.(1)二维平面上两点a(x1,y1)与b(x2,y2)间的欧氏距离:(2)三维空间两点a(x1,y1,z1)与b(x2,y2,z2)间的欧氏距离:(3)两个n维向量a(x11,x12,-,x1n)与 b(x21,x22,-,x2n)间的欧氏距离:(4)也可以用表示成向量运算的形式: python中的实现: 方法一: import numpy as np x=

概率分布之间的距离度量以及python实现(四)

1.f 散度(f-divergence) KL-divergence 的坏处在于它是无界的.事实上KL-divergence 属于更广泛的 f-divergence 中的一种. 如果P和Q被定义成空间中的两个概率分布,则f散度被定义为: 一些通用的散度,如KL-divergence, Hellinger distance, 和total variation distance,都是f散度的一种特例.只是f函数的取值不同而也. 在python中的实现 : import numpy as np imp

距离度量以及python实现(二)

接上一篇:http://www.cnblogs.com/denny402/p/7027954.html 7. 夹角余弦(Cosine) 也可以叫余弦相似度. 几何中夹角余弦可用来衡量两个向量方向的差异,机器学习中借用这一概念来衡量样本向量之间的差异. (1)在二维空间中向量A(x1,y1)与向量B(x2,y2)的夹角余弦公式: (2) 两个n维样本点a(x11,x12,…,x1n)和b(x21,x22,…,x2n)的夹角余弦        类似的,对于两个n维样本点a(x11,x12,…,x1n

距离度量学习

为什么学习距离度量? 在机器学习中,对高维数据进行降维的主要目的是希望找到一个合适的低维空间,在此空间中进行学习能比原始空间性能更好.事实上,每个空间对应了在样本属性上定义的一个距离度量,而寻找合适的空间,实质上就是在寻找一个合适的距离度量.那么,为何不直接尝试" 学习" 出一个合适的距离度量呢?这就是度量学习(metric learning)的基本动机. 扩展 度量学习的目的是在样本上学习距离度量函数. 距离度量函数必须服从4个公理非负性,对称性,次可加性及不可分与同一性.在实践中,

从K近邻算法、距离度量谈到KD树、SIFT+BBF算法

从K近邻算法.距离度量谈到KD树.SIFT+BBF算法 从K近邻算法.距离度量谈到KD树.SIFT+BBF算法 前言 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章待写:1.KD树:2.神经网络:3.编程艺术第28章.你看到,blog内的文章与你于别处所见的任何都不同.于是,等啊等,等一台电脑,只好等待..”.得益于田,借了我一台电脑(借他电脑的时候,我连表示感谢,他说“能找到工作全靠你的博客,这点儿小忙还说,不地道”,有的时候,稍许感受到受人信任也是一种压力,愿我不辜负大家对我的信任)

【Matlab开发】matlab中bar绘图设置与各种距离度量

[Matlab开发]matlab中bar绘图设置与各种距离度量 标签(空格分隔): [Matlab开发] [机器学习] 声明:引用请注明出处http://blog.csdn.net/lg1259156776/ Matlab Bar图如何为每个bar设置不同颜色 data = [3, 7, 5, 2;4, 3, 2, 9;6, 6, 1, 4]; b = bar(data); 使用bar绘制非常直观简单,但有时需要突出显示某一个bar,比如该bar是一个标杆,用来衡量其bar的高度,所以可以用醒目

机器学习中的距离度量

在做分类时常常需要估算不同样本之间的相似性度量(Similarity Measurement),这时通常采用的方法就是计算样本间的“距离”(Distance).采用什么样的方法计算距离是很讲究,甚至关系到分类的正确与否. 本文的目的就是对常用的相似性度量作一个总结. 本文目录: 1. 欧氏距离 2. 曼哈顿距离 3. 切比雪夫距离 4. 闵可夫斯基距离 5. 标准化欧氏距离 6. 马氏距离 7. 夹角余弦 8. 汉明距离 9. 杰卡德距离 & 杰卡德相似系数 10. 相关系数 & 相关距离

ML 07、机器学习中的距离度量

机器学习算法 原理.实现与实践 —— 距离的度量 声明:本篇文章内容大部分转载于July于CSDN的文章:从K近邻算法.距离度量谈到KD树.SIFT+BBF算法,对内容格式与公式进行了重新整理.同时,文章中会有一些对知识点的个人理解和归纳补充,不代表原文章作者的意图. 1. 欧氏距离 欧氏距离是最常见的两点之间或多点之间的距离表示法,又称之为欧几里得度量,它定义于欧几里得空间中,如点 $x = (x_1,\cdots,x_n)$ 和$y = (y_2,\cdots,y_n)$之间的距离为: $$

基于结构的距离度量

基于结构的距离度量是找出序列的在较高尺度上的结构,并在全局尺度上进行比较.基于结构的距离度量又可以进一步分成两种:基于模型(model-based)的距离度量和基于压缩(compression-based)的距离度量.基于模型的距离度量是先对每个待比较的时间序列分别构建各自的全局模型,建好各自的模型后,基于某个序列的模型来尝试生成另一条序列,结果只有两个:能生成和不能生成,把这种可能生成的概率值作为序列之间相似性的度量.典型的代表方法为基于隐Markov模型HMM(Hidden MarkovMo