HashMap和ConcurrentHashMap实现原理及源码分析

  ConcurrentHashMap是Java并发包中提供的一个线程安全且高效的HashMap实现,ConcurrentHashMap在并发编程的场景中使用频率非常之高,本文就来分析下ConcurrentHashMap的实现原理,并对其实现原理进行分析(JDK1.7).

ConcurrentHashMap实现原理

  众所周知,哈希表是中非常高效,复杂度为O(1)的数据结构,在Java开发中,我们最常见到最频繁使用的就是HashMap和HashTable,但是在线程竞争激烈的并发场景中使用都不够合理。

  HashMap :先说HashMap,HashMap是线程不安全的,在并发环境下,可能会形成环状链表(扩容时可能造成,具体原因自行百度google或查看源码分析),导致get操作时,cpu空转,所以,在并发环境中使用HashMap是非常危险的。

  HashTable : HashTable和HashMap的实现原理几乎一样,差别无非是1.HashTable不允许key和value为null;2.HashTable是线程安全的。但是HashTable线程安全的策略实现代价却太大了,简单粗暴,get/put所有相关操作都是synchronized的,这相当于给整个哈希表加了一把大锁,多线程访问时候,只要有一个线程访问或操作该对象,那其他线程只能阻塞,相当于将所有的操作串行化,在竞争激烈的并发场景中性能就会非常差。

  HashTable性能差主要是由于所有操作需要竞争同一把锁,而如果容器中有多把锁,每一把锁锁一段数据,这样在多线程访问时不同段的数据时,就不会存在锁竞争了,这样便可以有效地提高并发效率。这就是ConcurrentHashMap所采用的"分段锁"思想。

  

ConcurrentHashMap源码分析  

  ConcurrentHashMap采用了非常精妙的"分段锁"策略,ConcurrentHashMap的主干是个Segment数组。

 final Segment<K,V>[] segments;

  Segment继承了ReentrantLock,所以它就是一种可重入锁(ReentrantLock)。在ConcurrentHashMap,一个Segment就是一个子哈希表,Segment里维护了一个HashEntry数组,并发环境下,对于不同Segment的数据进行操作是不用考虑锁竞争的。(就按默认的ConcurrentLeve为16来讲,理论上就允许16个线程并发执行,有木有很酷)

  所以,对于同一个Segment的操作才需考虑线程同步,不同的Segment则无需考虑。

Segment类似于HashMap,一个Segment维护着一个HashEntry数组

 transient volatile HashEntry<K,V>[] table;

  HashEntry是目前我们提到的最小的逻辑处理单元了。一个ConcurrentHashMap维护一个Segment数组,一个Segment维护一个HashEntry数组。

static final class HashEntry<K,V> {
        final int hash;
        final K key;
        volatile V value;
        volatile HashEntry<K,V> next;
        //其他省略
}  

  我们说Segment类似哈希表,那么一些属性就跟我们之前提到的HashMap差不离,比如负载因子loadFactor,比如阈值threshold等等,看下Segment的构造方法

Segment(float lf, int threshold, HashEntry<K,V>[] tab) {
            this.loadFactor = lf;//负载因子
            this.threshold = threshold;//阈值
            this.table = tab;//主干数组即HashEntry数组
        }

  我们来看下ConcurrentHashMap的构造方法

public ConcurrentHashMap(int initialCapacity,
                               float loadFactor, int concurrencyLevel) {
          if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
              throw new IllegalArgumentException();
          //MAX_SEGMENTS 为1<<16=65536,也就是最大并发数为65536
          if (concurrencyLevel > MAX_SEGMENTS)
              concurrencyLevel = MAX_SEGMENTS;
          //2的sshif次方等于ssize,例:ssize=16,sshift=4;ssize=32,sshif=5
         int sshift = 0;
         //ssize 为segments数组长度,根据concurrentLevel计算得出
         int ssize = 1;
         while (ssize < concurrencyLevel) {
             ++sshift;
             ssize <<= 1;
         }
         //segmentShift和segmentMask这两个变量在定位segment时会用到,后面会详细讲
         this.segmentShift = 32 - sshift;
         this.segmentMask = ssize - 1;
         if (initialCapacity > MAXIMUM_CAPACITY)
             initialCapacity = MAXIMUM_CAPACITY;
         //计算cap的大小,即Segment中HashEntry的数组长度,cap也一定为2的n次方.
         int c = initialCapacity / ssize;
         if (c * ssize < initialCapacity)
             ++c;
         int cap = MIN_SEGMENT_TABLE_CAPACITY;
         while (cap < c)
             cap <<= 1;
         //创建segments数组并初始化第一个Segment,其余的Segment延迟初始化
         Segment<K,V> s0 =
             new Segment<K,V>(loadFactor, (int)(cap * loadFactor),
                              (HashEntry<K,V>[])new HashEntry[cap]);
         Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize];
         UNSAFE.putOrderedObject(ss, SBASE, s0);
         this.segments = ss;
     }

  初始化方法有三个参数,如果用户不指定则会使用默认值,initialCapacity为16,loadFactor为0.75(负载因子,扩容时需要参考),concurrentLevel为16。

  从上面的代码可以看出来,Segment数组的大小ssize是由concurrentLevel来决定的,但是却不一定等于concurrentLevel,ssize一定是大于或等于concurrentLevel的最小的2的次幂。比如:默认情况下concurrentLevel是16,则ssize为16;若concurrentLevel为14,ssize为16;若concurrentLevel为17,则ssize为32。为什么Segment的数组大小一定是2的次幂?其实主要是便于通过按位与的散列算法来定位Segment的index。至于更详细的原因,有兴趣的话可以参考我的另一篇文章《HashMap实现原理及源码分析》,其中对于数组长度为什么一定要是2的次幂有较为详细的分析。

  接下来,我们来看看put方法

public V put(K key, V value) {
       Segment<K,V> s;
       //concurrentHashMap不允许key/value为空
       if (value == null)
           throw new NullPointerException();
       //hash函数对key的hashCode重新散列,避免差劲的不合理的hashcode,保证散列均匀
       int hash = hash(key);
       //返回的hash值无符号右移segmentShift位与段掩码进行位运算,定位segment
       int j = (hash >>> segmentShift) & segmentMask;
       if ((s = (Segment<K,V>)UNSAFE.getObject          // nonvolatile; recheck
            (segments, (j << SSHIFT) + SBASE)) == null) //  in ensureSegment
           s = ensureSegment(j);
       return s.put(key, hash, value, false);
   }

 从源码看出,put的主要逻辑也就两步:1.定位segment并确保定位的Segment已初始化 2.调用Segment的put方法。

 关于segmentShift和segmentMask

  segmentShift和segmentMask这两个全局变量的主要作用是用来定位Segment,int j =(hash >>> segmentShift) & segmentMask。

  segmentMask:段掩码,假如segments数组长度为16,则段掩码为16-1=15;segments长度为32,段掩码为32-1=31。这样得到的所有bit位都为1,可以更好地保证散列的均匀性

  segmentShift:2的sshift次方等于ssize,segmentShift=32-sshift。若segments长度为16,segmentShift=32-4=28;若segments长度为32,segmentShift=32-5=27。而计算得出的hash值最大为32位,无符号右移segmentShift,则意味着只保留高几位(其余位是没用的),然后与段掩码segmentMask位运算来定位Segment。

  get/put方法

  get方法

public V get(Object key) {
        Segment<K,V> s;
        HashEntry<K,V>[] tab;
        int h = hash(key);
        long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
        //先定位Segment,再定位HashEntry
        if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
            (tab = s.table) != null) {
            for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
                     (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
                 e != null; e = e.next) {
                K k;
                if ((k = e.key) == key || (e.hash == h && key.equals(k)))
                    return e.value;
            }
        }
        return null;
    }

  get方法无需加锁,由于其中涉及到的共享变量都使用volatile修饰,volatile可以保证内存可见性,所以不会读取到过期数据。

  来看下concurrentHashMap代理到Segment上的put方法,Segment中的put方法是要加锁的。只不过是锁粒度细了而已。

final V put(K key, int hash, V value, boolean onlyIfAbsent) {
            HashEntry<K,V> node = tryLock() ? null :
                scanAndLockForPut(key, hash, value);        //tryLock不成功时会遍历定位到的HashEnry位置的链表(遍历主要是为了使CPU缓存链表),若找不到,则创建HashEntry。        //tryLock一定次数后(MAX_SCAN_RETRIES变量决定),则lock。若遍历过程中,由于其他线程的操作导致链表头结点变化,则需要重新遍历。
            V oldValue;
            try {
                HashEntry<K,V>[] tab = table;
                int index = (tab.length - 1) & hash;          //定位HashEntry,可以看到,这个hash值在定位Segment时和在Segment中定位HashEntry都会用到,只不过定位Segment时只用到高几位。
                HashEntry<K,V> first = entryAt(tab, index);
                for (HashEntry<K,V> e = first;;) {
                    if (e != null) {
                        K k;
                        if ((k = e.key) == key ||
                            (e.hash == hash && key.equals(k))) {
                            oldValue = e.value;
                            if (!onlyIfAbsent) {
                                e.value = value;
                                ++modCount;
                            }
                            break;
                        }
                        e = e.next;
                    }
                    else {
                        if (node != null)
                            node.setNext(first);
                        else
                            node = new HashEntry<K,V>(hash, key, value, first);
                        int c = count + 1;
              //若c超出阈值threshold,需要扩容并rehash。扩容后的容量是当前容量的2倍。这样可以最大程度避免之前散列好的entry重新散列,              //具体在另一篇文章中有详细分析,不赘述。扩容并rehash的这个过程是比较消耗资源的。
                        if (c > threshold && tab.length < MAXIMUM_CAPACITY)
                            rehash(node);
                        else
                            setEntryAt(tab, index, node);
                        ++modCount;
                        count = c;
                        oldValue = null;
                        break;
                    }
                }
            } finally {
                unlock();
            }
            return oldValue;
        }

总结

  ConcurrentHashMap作为一种线程安全且高效的哈希表的解决方案,尤其其中的"分段锁"的方案,相比HashTable的全表锁在性能上的提升非常之大。本文对ConcurrentHashMap的实现原理进行了详细分析,并解读了部分源码,希望能帮助到有需要的童鞋。

原文地址:https://www.cnblogs.com/jing99/p/11330341.html

时间: 2024-10-14 10:30:52

HashMap和ConcurrentHashMap实现原理及源码分析的相关文章

ConcurrentHashMap实现原理及源码分析

ConcurrentHashMap实现原理 ConcurrentHashMap源码分析 总结 ConcurrentHashMap是Java并发包中提供的一个线程安全且高效的HashMap实现(若对HashMap的实现原理还不甚了解,可参考我的另一篇文章HashMap实现原理及源码分析),ConcurrentHashMap在并发编程的场景中使用频率非常之高,本文就来分析下ConcurrentHashMap的实现原理,并对其实现原理进行分析(JDK1.7). ConcurrentHashMap实现原

2.Java集合-ConcurrentHashMap实现原理及源码分析

一.为何用ConcurrentHashMap 在并发编程中使用HashMap可能会导致死循环,而使用线程安全的HashTable效率又低下. 线程不安全的HashMap 在多线程环境下,使用HashMap进行put操作会引起死循环,导致CPU利用率接近100%,所以在并发情况下不能使用HashMap 效率低下的HashTable Hashtable使用synchronized来保证线程的安全,但是在线程竞争激烈的情况下Hashtable的效率非常低下.当一个线程访问Hashtable的同步方法,

【转】HashMap实现原理及源码分析

哈希表(hash table)也叫散列表,是一种非常重要的数据结构,应用场景极其丰富,许多缓存技术(比如memcached)的核心其实就是在内存中维护一张大的哈希表,而HashMap的实现原理也常常出现在各类的面试题中,重要性可见一斑.本文会对java集合框架中的对应实现HashMap的实现原理进行讲解,然后会对JDK7中的HashMap源码进行分析. 一.什么是哈希表 在讨论哈希表之前,我们先大概了解下其它数据结构在新增.查找等基础操作上的执行性能. 数组:采用一段连续的存储单元来存储数据.对

【Spring】Spring&amp;WEB整合原理及源码分析

表现层和业务层整合: 1. Jsp/Servlet整合Spring: 2. Spring MVC整合SPring: 3. Struts2整合Spring: 本文主要介绍Jsp/Servlet整合Spring原理及源码分析. 一.整合过程 Spring&WEB整合,主要介绍的是Jsp/Servlet容器和Spring整合的过程,当然,这个过程是Spring MVC或Strugs2整合Spring的基础. Spring和Jsp/Servlet整合操作很简单,使用也很简单,按部就班花不到2分钟就搞定了

【Spring】Spring&amp;WEB整合原理及源码分析(二)

一.整合过程 Spring&WEB整合,主要介绍的是Jsp/Servlet容器和Spring整合的过程,当然,这个过程是Spring MVC或Strugs2整合Spring的基础. Spring和Jsp/Servlet整合操作很简单,使用也很简单,按部就班花不到2分钟就搞定了,本节只讲操作不讲原理,更多细节.原理及源码分析后续过程陆续涉及. 1. 导入必须的jar包,本例spring-web-x.x.x.RELEASE.jar: 2. 配置web.xml,本例示例如下: <?xml vers

深度理解Android InstantRun原理以及源码分析

深度理解Android InstantRun原理以及源码分析 @Author 莫川 Instant Run官方介绍 简单介绍一下Instant Run,它是Android Studio2.0以后新增的一个运行机制,能够显著减少你第二次及以后的构建和部署时间.简单通俗的解释就是,当你在Android Studio中改了你的代码,Instant Run可以很快的让你看到你修改的效果.而在没有Instant Run之前,你的一个小小的修改,都肯能需要几十秒甚至更长的等待才能看到修改后的效果. 传统的代

OpenCV学习笔记(27)KAZE 算法原理与源码分析(一)非线性扩散滤波

http://blog.csdn.net/chenyusiyuan/article/details/8710462 OpenCV学习笔记(27)KAZE 算法原理与源码分析(一)非线性扩散滤波 2013-03-23 17:44 16963人阅读 评论(28) 收藏 举报 分类: 机器视觉(34) 版权声明:本文为博主原创文章,未经博主允许不得转载. 目录(?)[+] KAZE系列笔记: OpenCV学习笔记(27)KAZE 算法原理与源码分析(一)非线性扩散滤波 OpenCV学习笔记(28)KA

caffe中HingeLossLayer层原理以及源码分析

输入: bottom[0]: NxKx1x1维,N为样本个数,K为类别数.是预测值. bottom[1]: Nx1x1x1维, N为样本个数,类别为K时,每个元素的取值范围为[0,1,2,-,K-1].是groundTruth. 输出: top[0]: 1x1x1x1维, 求得是hingeLoss. 关于HingeLoss: p: 范数,默认是L1范数,可以在配置中设置为L1或者L2范数. :指示函数,如果第n个样本的真实label为k,则为,否则为-1. tnk: bottom[0]中第n个样

【OpenCV】SIFT原理与源码分析:关键点描述

<SIFT原理与源码分析>系列文章索引:http://www.cnblogs.com/tianyalu/p/5467813.html 由前一篇<方向赋值>,为找到的关键点即SIFT特征点赋了值,包含位置.尺度和方向的信息.接下来的步骤是关键点描述,即用用一组向量将这个关键点描述出来,这个描述子不但包括关键点,也包括关键点周围对其有贡献的像素点.用来作为目标匹配的依据(所以描述子应该有较高的独特性,以保证匹配率),也可使关键点具有更多的不变特性,如光照变化.3D视点变化等. SIFT