Linear Algebra lecture4 note

Inverse of AB,A^(A的转置)

Product of elimination matrices  A=LU (no row exchanges)

 



Inverse of AB,A^(A的转置):

 



Product of elimination matrices  A=LU (no row exchanges)

E32E31E21A=U (no row exchanges)    EA=U

A=E21`E31`E32`U

L表示下三角矩阵,lower triangle

D表示对角矩阵,diagonal triangle

A=LU

L=E21`E31`E32`

对比EA=U  &   A=LU,哪种形式更好一些?

example:

设E31为单位矩阵,

A=LU的形式更加简洁一些,if no row exchanges,  multipliers go directly into L

思考:How many operations on n * n Matrix(A)? 也就是多少数字改变了?

假设n=100,

row1 不改变,后续行消元,99*100次运算,约看作100*100次;

对第二行进行消元,98*99次运算,约看作99*99次;

继续…

所以总运算次数为

从积分角度考虑可得最终结果

若再考虑等式右侧的b,需要的运算量为

 



Permutation

考虑单位矩阵的行变换,所有情况一一列出(共6种)

这6个矩阵好像构成了一个群,不论是乘还是逆运算,所得结果均在此群中,且满足条件

若是4维矩阵,则满足条件的、构成群的矩阵有4!=24个

若是n维矩阵,则满足条件的、构成群的矩阵有n!个

时间: 2024-10-10 18:08:39

Linear Algebra lecture4 note的相关文章

Linear Algebra lecture8 note

Compute solution of AX=b (X=Xp+Xn) rank r r=m solutions exist r=n solutions unique   example: 若想方程有解,b1,b2,b3需要满足什么条件? 观察矩阵可知,第三行是前两行的和,所以b1+b2=b3 Solvability Condition on b: Ax=b is solvable when b is in C (A) If a combination of Rows of A gives zer

MAT2040 Linear Algebra

Binary Vector Spaces and Error Correcting CodesMAT2040 Linear Algebra (2019 Fall)Project 1Project Instructions:• Read the following text and answer the questions given in and after the text.• For questions that need Julia, both codes and results shou

A Linear Algebra Problem(唯一性的判定)

A Linear Algebra Problem Time Limit: 3000/1000MS (Java/Others)     Memory Limit: 65535/65535KB (Java/Others) Submit Status God Kufeng is the God of Math. However, Kufeng is not so skilled with linear algebra, especially when dealing with matrixes. On

《Linear Algebra and Its Applications》- 线性方程组

同微分方程一样,线性代数也可以称得上是一门描述自然的语言,它在众多自然科学.经济学有着广阔的建模背景,这里笔者学识有限暂且不列举了,那么这片文章来简单的讨论一个问题——线性方程组. 首先从我们中学阶段就很熟系的二元一次方程组,我们采用换元(其实就是高斯消元)的方法.但是现在我们需要讨论更加一般的情况,对于线性方程,有如下形式: a1x1+a2x2+…anxn = b. 现在我们给出多个这样的方程构成方程组,我们是否有通用的解法呢? 在<Linear Algebra and Its Applica

Here’s just a fraction of what you can do with linear algebra

Here’s just a fraction of what you can do with linear algebra The next time someone wonders what the point of linear algebra is, send them here. I write a blog on math and programming and I see linear algebra applied to computer science all the time.

Memo - Chapter 6 of Strang&#39;s Linear Algebra and Its Applications

1.实对称矩阵的正定 2.实对称矩阵的半正定 3. Sylvester’s law of inertia : 4.Sylvester’s law of inertia 的推论: 5. SVD 6.瑞利伤: Memo - Chapter 6 of Strang's Linear Algebra and Its Applications

Memo - Chapter 3 of Strang&#39;s Linear Algebra and Its Applications

1.正交向量.正交空间.正交补空间 2.号称是本书最重要的配图 3.向量的cosine距离,投影变换,最小二乘 4.正交基与Schmidt正交化与QR分解 5.函数空间,傅里叶级数,Hilbert空间 Memo - Chapter 3 of Strang's Linear Algebra and Its Applications

cdoj793-A Linear Algebra Problem

http://acm.uestc.edu.cn/#/problem/show/793 A Linear Algebra Problem Time Limit: 3000/1000MS (Java/Others)     Memory Limit: 65535/65535KB (Java/Others) Submit Status God Kufeng is the God of Math. However, Kufeng is not so skilled with linear algebra

《Linear Algebra and Its Applications》-矩阵运算

可以说第一章<Linear Algebra and Its Applications>着重介绍了线性代数中几个核心概念(向量.矩阵和线性方程组)之间的关系(方程的同解性),那么下面这本书开始分别介绍这几个核心概念,比如从这篇文章开始,会简单的介绍矩阵方面的内容. 首先对于我们定义的计算工具(矩阵),我们有必要研究其运算规律,这个方法在定义很多新的运算符号的时候都是适用的.矩阵的加减法这里就不用累述的,非常好理解,这篇文中我们主要来讨论矩阵的乘法运算的定义过程. 其实不管是从离散的角度还是在线性