【微积分】 07 - 微积分的应用

1. 微分的应用

1.1 一元函数的微分

1.1.1 单调性、极值、渐近线

  导数给出了函数的走向,它对我们分析函数的图形性质很有作用,这里就用微分学的知识来了解函数的性质。一阶导数对函数的影响是最直接的,这里先看一阶导数。对于区间上的常值函数\(f(x)=C\),它的导数处处为零,反之由中值定理知,导数恒为零的函数为常值,故函数在区间上\(f(x)=0\)的充要条件是\(f‘(x)=0\)。这个结论还说明了导数相同的函数的差函数为常数,这对在证明函数相等很有用,比如可以证明\(3\arccos{x}-\arccos{3x-4x^2}=\pi\)。

  利用中值定理容易证明,区间上函数必定单调上升(下降)的充要条件是\(f‘(x)\geqslant 0\)(\(f‘(x)\leqslant 0\))。当等号不成立时,函数还是严格单调上升(下降)的。在部分点等号成立时,利用反证法可知,只要等号不在一个区间恒成立,函数也是严格单调上升(下降)的。

  我们已经知道,对任意函数\(f(x)\),如果\(x_0\)是极值点,则有\(f‘(x_0)=0\)。反之则不一定(比如\(x^3\)的零点),使得\(f‘(x_0)=0\)的点\(x_0\)一般称为静止点。如果在\(x_0\)的领域内可导,则两侧的导数同号时为一般静止点,异号时为极值点(且根据具体情况可判定极大还是极小)。一般地,如果\(f‘(x_0)=f‘‘(x_0)=\cdots=f^{(n-1)}(x_0)=0\),但\(f^{(n)}\ne 0\),则由泰勒公式知式(1)成立。进而可以证明,\(n\)为奇数时\(x_0\)是一般静止点,\(n\)为偶数时,若\(f^{(n)}>0\)则\(x_0\)是极小点,若\(f^{(n)}<0\)则\(x_0\)是极大点。

\[f(x)=f(x_0)+\dfrac{1}{n!}f^{(n)}(x_0)(x-x_0)^n+o((x-x_0)^n)\tag{1}\]

  有了以上结论,我们就能画出函数的大致曲线,只要弄清楚零点、单调性即可。另外有时还会有渐近线,它其实就是以下三种情况之一:(1)\(x\to x_0\)时\(f(x)\to\infty\);(2)\(x\to\infty\)时\(f(x)\to y_0\);(3)式(2)分别存在有限极限。前两个分别以\(x=x_0\)和\(y=y_0\)为渐近线,第三个以\(y=ax+b\)为渐近线。

\[\lim\limits_{x\to\infty}{\dfrac{f(x)}{x}}=a;\quad \lim\limits_{x\to\infty}{[f(x)-ax]}=b\tag{2}\]

1.1.2 凸函数

  最后来看二阶导数在函数图形上的体现,导数可以看做是曲线的切线斜率,那么二阶导数则可刻画了斜率的变化。可以想象,当\(f‘‘(x)>0\)时函数曲线上凸,而当\(f‘‘(x)<0\)时函数曲线下凸。如何严格地表述这样的曲线?可以这样说,连接曲线上任意两点形成直线,这两点间的函数值都在直线一侧。受此启发,定义在任意点式(3)都成立的函数为下凸(上凸)函数,等号不成立时也叫严格下凸(上凸)函数

\[f(tx_1+(1-t)x_2)\leqslant(\geqslant)tf(x_1)+(1-t)f(x_2),\quad(0<t<1)\tag{3}\]

  以上凸函数的定义中并未假定函数可导,所以不好描述导数的性质,为此换做观察曲线上变化割线的性质。具体来讲,比如对下凸函数,设\(x_1<x_2<x_3\),利用定义容易证明式(4)成立它们还可以作为凸函数的等价定义。右边的不等式说明任意点\(x_0\)右侧,\(\dfrac{f(x)-f(x_0)}{x-x_0}\)随着\(x\to x_0\)单调减小,但左边的不等式又说明它是有下界的,从而\(x_0\)存在右极限(或极限为无穷)。同样可证\(x_0\)存在左极限(或极限为无穷),当然,如果\(x_0\)是端点,其中只有一个成立。当\(x_0\)是区间内点时,显然\(f(x)\)在\(x_0\)处连续。

\[\dfrac{f(x_2)-f(x_1)}{x_2-x_1}\leqslant\dfrac{f(x_3)-f(x_2)}{x_3-x_2};\quad\dfrac{f(x_2)-f(x_1)}{x_2-x_1}\leqslant\dfrac{f(x_3)-f(x_1)}{x_3-x_1}\tag{4}\]

  其实凸函数不一定可导,比如\(V\)字形的\(f(x)=|x|\)是下凸函数,但在\(x_0\)不可导。当\(f(x)\)可导时,容易证明\(f(x)\)下凸(上凸)的充要条件是,\(f‘(x)\)单调上升(下降)。这个充要条件还等价于:曲线在它任何一条切线的上方。若\(f(x)\)二阶可导,还可以证明,\(f(x)\)下凸(上凸)的充要条件是\(f‘‘(x)\geqslant 0\)(\(f‘‘(x)\leqslant 0\))。这些比较直观,证明也很简单,请自行论证。

  上面的结论说明,如果\(f‘‘(x)\)连续且\(f‘‘(x_0)=0\),而在领域内\(f‘‘(x)\ne 0\),可见\(f(x)\)在\(x_0\)左右两侧分别为上、下凸函数,所以曲线在\(x_0\)左右领域内分别在\(x_0\)切线的两侧。更一般的,如果\(f(x)\)在\(x_0\)处可导,且左右领域的点分别落在切线的两侧,则称\(x_0\)为\(f(x)\)的拐点

  式(3)对二阶可导的凸函数还有进一步推广,设\(\sum\limits_{k=1}^n{p_k}=1,(p_k>0)\),且记\(X=\sum\limits_{k=1}^n{x_k}\)。对下凸函数\(f(x)\)可有式(5)成立,\(n\)个式子乘上\(p_k\)相加便有式(6)成立。凸函数的这个结论,可以用来很容易地证明一些不等式,比如令\(f(x)=\ln{x},\,p_k=\dfrac{1}{n}\),可以证明\(\prod x_k\leqslant \dfrac{1}{n}\sum x_k\)。

\[f(x_k)=f(X)+f‘(X)(x_k-X)+\frac{1}{2}f"(\xi)(x-X)^2\geqslant f(X)+f‘(X)(x_k-X)\tag{5}\]

\[\sum\limits_{k=1}^n{p_kf(x_k)}\geqslant f\left(\sum\limits_{k=1}^n{p_kx_k}\right)\tag{6}\]

1.2 多元函数的微分

1.2.1 切线、法平面

  现在利用微分的方法复习空间的点线面,请先复习空间解析几何的基本内容。空间曲线的表达式,最简单的就是参数方程\(x=x(t),y=y(t),z=z(t)\),一阶连续导数\((x‘(t),y‘(t),z‘(t))\)确定了曲线在\((x(t),y(t),z(t))\)处的切矢量\(\vec{T}\),切线连续变化的曲线称为光滑曲线。曲线还有可能表示为两个曲面的交集(式(7)左),利用向量值函数隐函数的结论可得到切矢量\((1,y‘_x(x),z‘_x(x))\),约去分母便得式(7)右。

\[\left\{\begin{matrix}F(x,y,z)=0\\G(x,y,z)=0\end{matrix}\right.\quad\Rightarrow\quad \vec{T}=\left(\,\dfrac{\partial(F,G)}{\partial(y,z)},\:\dfrac{\partial(F,G)}{\partial(z,x)},\:\dfrac{\partial(F,G)}{\partial(z,y)}\,\right)\tag{7}\]

  现在来看空间的曲面\(F(x,y,z)=0\),如果\(F‘_x,F‘_y,F_z\)都连续,它被称为光滑曲面。考察曲面上经过\((x_0,y_0,z_0)\)的任意曲线,带入曲面方程有\(F(x(t),y(t),z(t))=0\),由曲面的可微性易知曲线光滑,对\(t\)求导得式(8)。该式表明所有曲线在\((x_0,y_0,z_0)\)处的切线在同一平面上,这个平面被称为曲面在点\((x_0,y_0,z_0)\)的法平面,它的法向量为\((F‘_x,F‘_y,F‘_z)\)所示。曲面还可能是用式(9)左边的参数方程表示的,用前两者可以确定隐函数\(u(x,y),v(x,y)\)。带入第三个式子就得到曲面表达式,算出法向量后约去分母便可导法向量(式(9)右)。

\[F‘_x(x_0,y_0,z_0)x‘_t(t_0)+F‘_y(x_0,y_0,z_0)y‘_t(t_0)+F‘_z(x_0,y_0,z_0)z‘_t(t_0)=0\tag{8}\]

\[\left\{\begin{matrix}x=x(u,v)\\y=y(u,v)\\z=z(u,v)\end{matrix}\right.\quad\Rightarrow\quad \vec{T}=\left(\,\dfrac{\partial(y,z)}{\partial(u,v)},\:\dfrac{\partial(z,x)}{\partial(u,v)},\:\dfrac{\partial(x,y)}{\partial(u,v)}\,\right)\tag{9}\]

1.2.2 曲率

  不知你有没有注意,平面曲线的二阶导数虽然表示斜率的变化速度,但由于斜率不与角度成正比,二阶导数其实并不能反映曲线的弯曲程度。要准确的度量曲线的弯曲程度,我们必须考察角度本身的变化率,具体讲就是在某点\(M_0\)切线角度\(\alpha\)相比长度\(s\)的变化率。如果式(10)的极限存在,则称\(k\)为点\(M_0\)的曲率,而\(\dfrac{1}{k}\)称为曲率半径

\[k=\left|\dfrac{\text{d}\alpha}{\text{d}s}\right|=\left|\lim\limits_{\varDelta s\to 0}\dfrac{\varDelta\alpha}{\varDelta s}\right|\tag{10}\]

  如果曲线以参数方程\(x(t),y(t)\)表示,首先有\(\text{d}s=\sqrt{{x‘_t}^2+{y‘_t}^2}\text{d}t\),再由\(\alpha=\arctan{\dfrac{y‘_t}{x‘_t}}\)也容易得到\(\text{d}\alpha\),从而容易有曲率的表达式(11),后者是坐标方程\(y=y(x)\)下的结果。对于极坐标方程\(r=r(\theta)\),可以写成参数方程\(x=r(\theta)\cos{\theta},y=r(\theta)\sin{\theta}\),带入式(11)可得式(12)。特别地,对于圆\(r=r_0\),易知其曲率半径就是\(r_0\)。

\[k=\dfrac{|x‘_ty‘‘_{t^2}-x‘‘_{t^2}y‘_t|}{({x‘_t}^2+{y‘_t}^2)^{\frac{3}{2}}}=\dfrac{|y‘‘_{x^2}|}{(1+{y‘_x}^2)^{\frac{3}{2}}}\tag{11}\]

\[r=r(\theta)\quad\Rightarrow\quad k=\dfrac{|r^2+2{r‘_{\theta}}^2-rr‘‘_{\theta^2}|}{(r^2+{r‘_{\theta}}^2)^{\frac{3}{2}}}\tag{12}\]

1.2.3 极值

  类似一元函数的结论,对于偏导数处处存在的函数\(f(x_1,\cdots,x_n)\),如果\(f‘_{x_i}(x_{01},\cdots,x_{0n})=0\)皆成立,那么\(\vec{x}_0=(x_{01},\cdots,x_{0n})\)称为\(f\)的静止点。静止点什么时候是极值点?再假设\(f\)有连续的二阶偏微分,使用泰勒公式即得式(13)。如果记对称矩阵\(Q=\{a_{ij}=f‘‘_{x_ix_j}(\vec{x}_0)\}\),则式(13)的值取决于\(Q\)关于\(\varDelta\vec{x}\)的二次型。二次型正定(负定),则静止点是极大点(极小点),否则就不确定。

\[\varDelta f(\vec{x}_0)=f(\vec{x})-f(\vec{x}_0)=\dfrac{1}{2}(\varDelta x_1\dfrac{\partial}{\partial x_1}+\cdots+\varDelta x_n\dfrac{\partial}{\partial x_n})^2f(\vec{x}_0+\theta\varDelta\vec{x})\tag{13}\]

  上面的极值假定变量可以在一个领域内变化,但实际问题中往往还有限制条件。比如已知\(G_i(\vec{x})=0,\,(i=1,\cdots,m)\),求\(F(\vec{x})\)的极值,这样的问题被称为条件极值。其实如果在局部\(\dfrac{\partial(G_1,\cdots,G_m)}{\partial(x_1,\cdots,x_m)}\ne 0\),则根据\(G_i=0\)可以得到\(x_1,\cdots,x_m\)关于\(x_{m+1},\cdots,x_n\)的隐函数,将它们带入\(F(\vec{x})\)即将问题转化为无条件极值问题。

  但很多时候,这样的隐函数无法直接写出,或者结果会破坏原本的对称性,从而使计算变得复杂。我们已经有了\(m\)个方程\(G_i=0\),现在需要再找\((n-m)\)个“好”的方程。我们仍然以\(x_{m+1},\cdots,x_n\)为自变量考虑问题,由\(F\)的极值首先有\(\text{d}F=\sum\limits_{i=1}^nF‘_{x_i}\,\text{d}x_i=0\),注意其中\(\text{d}x_i,\,(i=1,\cdots,m)\)为函数。如果能使等式中只有自变量\(x_{m+1},\cdots,x_n\)的微分,则微分系数都为\(0\),这就得到了另外的\(n-m\)个方程。

  可以同样对\(G_i\)求微分\(\text{d}G_i=\sum\limits_{i=1}^n{(G_i)}‘_{x_i}\,\text{d}x_i=0\),由于\(\dfrac{\partial(G_1,\cdots,G_m)}{\partial(x_1,\cdots,x_m)}\ne 0\),则可以选择参数\(\lambda_i,\,(i=1,\cdots,m)\),使得\(\text{d}F+\sum\limits_{i=1}^m{\lambda_i\text{d}G_i}\)中\(\text{d}x_i,\,(i=1,\cdots,m)\)的系数为\(0\)。这时\(\text{d}x_i,\,(i=m+1,\cdots,n)\)的系数必定是零,它们就是要找的\(n-m\)个方程。

  现在来总结一下需要解的方程,为方便讨论,把\(\lambda_i\)也看作是未知数,并记\(\varPhi\)为式(14)左。原先的\(m\)个方程\(G_i=0\)其实就是\(\varPhi‘_{\lambda_j}=0\),求\(\lambda_i\)的\(m\)方程其实是\(\varPhi‘_{x_i}=0,\,(i=1,\cdots,m)\),而最后的\(n-m\)个方程便是\(\varPhi‘_{x_i}=0,\,(i=m+1,\cdots,n)\)。这个方法称为拉格朗日乘数法,式(14)更便于记忆。但还要注意,我们求得的只是“静止点”,还需根据实际情况确定是否是极值。

\[\varPhi(\vec{x},\vec{\lambda})=F(\vec{x})+\sum\limits_{i=1}^m{\lambda_iG_i(\vec{x})}\quad\Rightarrow\quad\varPhi‘_{x_i}=0\;\wedge\;\varPhi‘_{\lambda_j}=0\tag{14}\]

2. 积分的应用

2.1 一元函数的积分

2.1.1 平面面积,体积

  之前我们把定积分作为面积的一种定义,现在来看看这个定义的合理性,以及定积分更广泛的应用。首先我们来给出平面图形面积的一个直观定义,对于多边形,它们总可以分割为若干个三角形。对于一般平面图形\(P\),我们总可以构造两个多边形\(B,A\),\(B\)把\(P\)围住而\(A\)被\(P\)围住,显然\(B\)的面积不小于\(A\)的面积。所有满足条件的\(A\)的面积有上确界\(S_*\),所有满足条件的\(B\)的面积有下确界\(S^*\),当\(S_*=S^*\)时称\(P\)可求积,且\(S=S_*=S^*\)称为\(P\)的面积

  对于任意图形\(P\),容易证明它可求积的充要条件是,存在多边形序列\(\{A_i\},\{B_i\}\),它们的面积极限相同。这个条件真好适合定积分的定义,所以对于可积函数,用定积分定义面积是合理的。对于复杂的图形(定义域为\([a,b]\)),记\(x=x_0\)截得的线段长为\(g(x)\)(连续),则图形面积为式(15)左。若\(x\)是\(t\)的参数方程,且\(x‘(t)\)连续,则还可用式(15)右边计算。

\[S_P=\int_a^bg(x)\,\text{d}x=\int_{\alpha}^{\beta}g(x(t))x‘(t)\,\text{d}t,\quad(x(\alpha)=a,a(\beta)=b)\tag{15}\]

  以上定义面积方法其实可以推广开来,如果要求的量\(Q\)在\([a,b]\)上连续,将它分成若干部分,每一部分使用某个可积分的近似值\(f(x_i)\varDelta x_i\)代替。然后证明误差部分趋于\(0\),这样所求量就等于定积分\(\int_a^bf(x)\,\text{d}x\)。对于每个具体的问题,证明误差部分趋于零是必须的,有时候也是困难的,对\(f(x)\)的论证非常必要。但下面的结论,我只打算给出粗略的描述,具体证明请参考教材。

  有些图形用极坐标描述更方便,对定义在\([\alpha,\beta]\)上的扇形\(r=r(\theta)\),可以证明其面积为式(16)。类似地,可以用多面体来的近似来定义体积,使用多个棱柱计算更方便。若立体\(V\)定义在\([a,b]\)上,且\(x\)处的截面面积为\(S(x)\),则可以证明其体积为\(\int_a^bS(x)\,\text{d}x\)。

\[r=r(\theta)\quad\Rightarrow\quad S_P=\dfrac{1}{2}\int_{\alpha}^{\beta}r^2(\theta)\,\text{d}{\theta}\tag{16}\]

2.1.2 长度、旋转面、曲线质量

  现在讨论平面里的一条曲线段\(l\),它由参数方程\(x(t),y(t),t\in[p,q]\)给出。在线上取若干个点,用线段按顺序连接它们,然后用这些线段的长度之和的极限定义\(l\)的长度。若曲线段自身不相交且不封闭,可以证明它的长度为式(17)。当曲线首尾相连时,可以拆成两段计算,容易证明这种情况公式仍然成立。如果把\(s\)看成\(t\)的函数,\(s‘(t)=x‘^2(t)+y‘^2(t)\geqslant 0\)且连续,从而\(t^{-1}(s)\)存在。\(x,y\)就可以看做\(s\)的函数,由\(\text{d}s^2=\text{d}x^2+\text{d}y^2\)知公式(18)成立。

\[s_l=\int_p^q\sqrt{x‘^2(t)+y‘^2(t)}\,\text{d}t=\int_a^b\sqrt{1+y‘^2(x)}\,\text{d}x=\int_{\alpha}^{\beta}\sqrt{r‘^2(\theta)+r^2(\theta)}\,\text{d}\theta\tag{17}\]

\[(\dfrac{\text{d}x}{\text{d}s})^2+(\dfrac{\text{d}y}{\text{d}s})^2=1\tag{18}\]

  对于一般曲面的面积,在后面会给出一般方法,这里只讨论一类特殊曲面的面积。对于定义在\([a,b]\)上的曲线\(y(x)\),将它绕\(x\)轴旋转一周,曲线的路径形成旋转面\(\Sigma\)。可以用曲线上的分段线段的旋转面(圆台侧面)作为旋转面面积,已经知道每个线段旋转面的面积是\(\pi(y_i+y_{i+1})d_i\)(\(d_i\)为线段长),从而可以证明旋转面面积为\(2\pi\int_0^ly\,\text{d}s\)(\(l\)为曲线长度),整理即得式(19)成立。

\[S_{\Sigma}=2\pi\int_p^qy(t)\sqrt{x‘^2(t)+y‘^2(t)}\,\text{d}t=2\pi\int_a^by(x)\sqrt{1+y‘^2(x)}\,\text{d}x\tag{19}\]

  更一般地,曲线\(l\)每一点的密度为\(f(x,y)\)(也可能是其它意义),那么曲线的质量是多少呢?同样的方法,将曲线分割为若干小段\(\varDelta s\),用所有段的质量和的极限作为\(l\)重量的定义。这样极限也被称为第一型曲线积分,记作\(\int_lf(x,y)\,\text{d}s\)。类似长度的分析,可以用关于\(t\)参数方程表示\(x,y,s\),并将第一型曲线积分转化为一元积分(式(20))。

\[\int_lf(x,y)\,\text{d}s=\int_p^qf(x(t),y(t))\sqrt{x‘^2(t)+y‘^2(t)}\,\text{d}t\tag{20}\]

2.2 多元函数的积分

2.2.1 平面面积、体积

  重积分本身就是对面积(体积)的积分,因此将积分函数设为\(1\)便可求平面面积体积(式(21)),然后可以通过累次积分或换元法求得重积分。

\[S=\iint_D\text{d}x\,\text{d}y;\quad V=\iiint_{\Omega}\text{d}x\,\text{d}y\,\text{d}z\tag{21}\]

2.2.2 曲面面积、曲面质量

  现在来看一般空间曲面\(\Gamma\)的面积,先介绍一个基本结论:设平面\(\pi_1,\pi_2\)之间的夹角为\(\theta\),则容易证明\(\pi_1\)上任何图形在\(\pi_2\)上的垂直投影的面积是原图形的\(\cos{\theta}\)。为了定义曲面面积,我们将曲面\(f(x,y)\)分割为多个小区域\(\Gamma_1,\cdots,\Gamma_n\),每个区域在\(xy\)平面上的垂直投影是\(D_i\)。对于每个区域\(\Gamma_i\),可以用它上面的任一点\(\xi_i,\eta_i\)的法平面被投影分割的部分\(T_i\)来近似,为此还要假设\(f(x,y)\)有连续偏导数。

  设\(T_i,D_i\)的面积分别为\(\varDelta\tau_i,\varDelta\sigma_i\),由于\(T_i\)的法向量为\((f_x(\xi_i,\eta_i),f_y(\xi_i,\eta_i),-1)\),故\(T_i,D_i\)的夹角满足式(22)左。所以曲面的近似面积如式(22)右所示,它其实就是\(D\)上的一个积分和,因此曲面面积为式(23)的重积分。如果\(x,y,z\)由参数\(u,v\)给出,重新计算便得式(24)的重积分。

\[\cos{\theta}=\dfrac{1}{\sqrt{1+f_x^2(\xi,\eta)+f_y^2(\xi,\eta)}};\quad\sum_{i=1}^n\varDelta\tau_i=\sum_{i=1}^n\dfrac{\varDelta\sigma_i}{\cos{\theta_i}}\tag{22}\]

\[S=\iint_D\sqrt{1+f_x^2(x,y)+f_y^2(x,y)}\,\text{d}x\,\text{d}y\tag{23}\]

\[S=\iint_{D‘}\sqrt{A^2+B^2+C^2}\,\text{d}u\,\text{d}v,\quad(A=\frac{\partial(y,z)}{\partial(u,v)},\;B=\frac{\partial(z,x)}{\partial(u,v)},\;C=\frac{\partial(x,y)}{\partial(u,v)})\tag{24}\]

  类似于第一型曲线积分,如果曲面\(\Gamma\)上的密度为\(f(x,y,z)\)(或其它意义),则曲面质量被称作第一型曲面积分。该积分记作\(\iint_{\Gamma}f(x,y,z)\,\text{d}\tau\),上面的曲面面积其实就是\(\iint_{\Gamma}\text{d}\tau\)。可以将微分\(\text{d}\tau\)展开,从而将第一型曲面积分转化为二重积分(比如式(25),也可以写成关于参变量\(u,v\)的重积分)。

\[\iint_{\Gamma}f(x,y,z)\,\text{d}\tau=\iint_Df(x,y,z(x,y))\sqrt{1+z_x^2+z_y^2}\,\text{d}x\,\text{d}y\tag{25}\]

时间: 2024-08-04 07:36:02

【微积分】 07 - 微积分的应用的相关文章

微积分入门(&quot;SX&quot;T版)

哎,微积分,表示暂时并没有很深入的研究--虽然高中有教,但是好像跟小西瓜学的顺序不太一样,嗯--教微积分之前不应该把极限学下来么--不管了,本文按傻X腾的理解来搞吧. 极限--大学的东西喔,我们先来认识一个符号:lim ,表示求极限,一般会在lim的下方写上变量和趋近值(例如n→0表示n趋向于0,n→∞表示n趋向于无穷大),然后会在后面跟上一个式子,表示要求你求出当变量趋近于某个值时,后面式子的值. 我相信以西瓜趋近于0的智商是不可能直接看懂以上文字的,于是乎,例题来得好些:求lim(n→0)1

我借过的书

序号 操作类型 操作日期 题名 索取号 条码号 1 流通借出 2011.09.18 季羡林散文精选 H319.4/1325 A0784395 2 流通借出 2011.09.18 图书馆员英语选读. Ⅱ H319.4/1379:2 A0809097 3 流通借出 2011.09.21 梁启超谈儒学 B222.05/50A A0782146 4 流通借出 2011.09.24 圣哲传: 孔子 B222.2/4A A0438239 5 流通还回 2011.09.24 梁启超谈儒学 B222.05/50

机器学习书籍资料推荐

本文为转载,源地址为:http://blog.chinaunix.net/uid-10314004-id-3594337.html 机器学习的资料较多,初学者可能会不知道怎样去有效的学习,所以对这方面的资料进行了一个汇总,希望能够对和我一样的初学者有一定的借鉴. 1. 数学基础    机器学习是构建于数学的基础之上的,因此只有把数学的基本功打好,才能够在机器学习领域有长远的发展.正所谓”勿在浮沙筑高台“. 微积分:微积分学教程 (F.M.菲赫金哥尔茨)俄罗斯的数学书 线性代数:Linear Al

百度房间卡是否可骄傲是快乐积分拉斯科

http://www.ebay.com/cln/ycn6646/-/167568259015/2015.02.07 http://www.ebay.com/cln/gon-n31/-/167197496017/2015.02.07 http://www.ebay.com/cln/hu_d027/-/167453250013/2015.02.07 http://www.ebay.com/cln/ywa2962/-/167301832012/2015.02.07 http://www.ebay.co

七月算法--12月机器学习在线班-第一次课笔记—微积分与概率论

七月算法--12月机器学习在线班-第一次课笔记—微积分与概率论 七月算法(julyedu.com)12月机器学习在线班学习笔记 http://www.julyedu.com

【微积分】 04 - 一元积分

1. 不定积分 1.1 原函数和不定积分 前面的微分学讨论了导数对函数局部值的影响,现在开始就来看看整体的导函数能确定怎样的函数?换句话说,已知导函数的情况下,能否确定函数本身.对于不是处处有定义的导函数,为了简单起见,可以把它拆分成多个区间讨论.为此,对于区间\(I\)上处处有定义的导函数\(f(x)\),如果存在函数满足\(F'(x)=f(x)\),那么\(F(x)\)称为\(f(x)\)的原函数. 前面我们已经知道,区间上导函数相同的函数之间只相差一个常数,从而如果原函数\(F(x)\)存

离散外微积分(DEC:Discrete Exterior Calculus)基础

原文链接 “若人们不相信数学简单,只因为他们未意识到生命之复杂.”——Johnvon Neumann DEC主要讨论离散情况下的外积分,它在计算机领域有重要用途.我们知道,使用计算机来处理几何图形的时候是不可能完全光滑的(计算机是只有0和1组成的离散化世界),利用DEC的概念也给我们提供了一种刻画离散几何的更好的工具.比如在几何分析中常用的“有限元分析(Finite Element Method)”中使用基于DEC的方法可以使用未uniform的曲面,更加方便简单. 外代数(Exterior A

微积分重点 第一课至第四课

1.微积分是关于两个函数间关系的学问 例如, 距离与速度的关系  f(t)  --- df/dt 高度与斜率的关系  y(x)  ---- dy/dx 函数1--->函数2:   求斜率 函数2--->函数1:   求面积,乘以自变量 两条曲线不同,但是包含了相同的信息 函数2表示了函数1在某一瞬间的变化率 2.导数的总览和计算 三个重要的基本函数:幂函数 三角函数 指数函数 求导过程: Δy/Δx 无限逼近取极限 就得到了 dy/dx sinx 在零点处斜率逼近1, 在pi/2处斜率为零,

微积分和概率论

微积分和概率论 作者:樱花猪 摘要: 本文为七月算法(julyedu.com)12月机器学习第一次课在线笔记.本次课以机器学习的观点来看待曾经学过的数学问题,为未来的做机器学习的公式推导做理论基础.主要内容包括高等数学和概率论部分内容.课程通过简单的数学知识串讲,唤起封存已久的记忆. 引言: 由于项目需求时间紧迫和仗着自己经历了各种考试和刚刚手热的数学知识,原本准备放弃掉前面几次有关于数学的课程,虽说直接上机器学习时对于基础知识这一块压力不算太大,但有些地方模糊不清,心底发虚,总想回来看看.在最