SURF算子(1)

SURF算子,参考这篇文章的解释http://www.ipol.im/pub/art/2015/69/

SURF 是   Speeded Up Robust Features 加速鲁棒特征的含义。

The source code and the online demo are accessible at the IPOL web page of this article1. The
proposed implementation of the SURF algorithm is written in C++ ISO/ANSI. It performs
features extraction from digital images and provides local correspondences for a pair of images.   文章提到了极几何一致性去去掉误匹配点

An epipolar geometric consistency checking may additionally be used to discard mismatches              
when considering two pictures from the same scene. This optional post-processing uses the           ORSA算法 百度没有,ASift算法
ORSA algorithm by B. Stival and L. Moisan [International Journal of Computer Vision, 57
(2004), pp. 201{218].

1 Introduction
1.1 Context, Motivation and Previous Work
Over the last decade, the most successful algorithms to address various computer vision problems have
been based on local, ane-invariant descriptions of images. The targeted applications encompass,
but are not limited to, image stitching and registration, image matching and comparison, indexation
and classication, depth estimation and 3-D reconstruction. Like many image processing approaches,
a popular and ecient methodology is to extract and compare local patches from dierent images.
However, in order to design fast algorithms and obtain compact and locally invariant representations,
some selection criteria and normalization procedures are required. A sparse representation of the
image is also necessary to avoid extensive patch-wise comparisons that would be computationally
expensive. The main challenges are thus to keep most salient features from images (such as corners,
blobs or edges) and then to build a local description of these features which is invariant to various
perturbations, such as noisy measurements, photometric changes, or geometric transformation.
Such problems have been addressed since the early years of computer vision, resulting in a very
prolic literature. Without being exhaustive, one may rst mention the famous Stephen-Harris         harris角点 lindeberg多尺度特征检测

corner detector [9], and the seminal work of Lindeberg on multi-scale feature detection (see e.g. [12]).
Secondly, invariant local image description from multi-scale analysis is a more recent topic: SIFT
descriptors [15] {from which SURF [2] is largely inspired{ are similarity invariant descriptors of an           
image that are also robust to noise and photometric change. Some algorithms extend this framework
to fully ane transformation invariance [18, 28], and dense representation [26].
The main interest of the SURF approach [2] studied in this paper is its fast approximation of the
SIFT method. It has been shown to share the same robustness and invariance while being faster to
compute.

1.2 Outline and Algorithm Overview
The SURF algorithm is in itself based on two consecutive steps (feature detection and description)     主要两个步骤 特征点检测和描述子
that are described in Sections 4 and 5. The last step is specic to the application targeted. In this
paper, we chose image matching as an illustration (Sections 5.4 and 6).
Multi-scale analysis Similarly to many other approaches, such as the SIFT method [15], the
detection of features in SURF relies on a scale-space representation, combined with first and second    多尺度分析依赖与多空间表述,基于一阶
order dierential operators. The originality of the SURF algorithm (Speeded Up Robust Features) is        和二阶差分运算
that these operations are speeded up by the use of box lters techniques (see e.g. [25], [27]) that are    SURF算子通过盒子滤波器加速多尺度
described in Section 2. For this reason, we will use the term box-space to distinguish it from the usual    分析,区别于普通的高斯尺度空间。
Gaussian scale-space. While the Gaussian scale space is obtained by convolution of the initial images      高斯尺度空间是卷积不同高斯核
with Gaussian kernels, the discrete box-space is also obtained by convolving the original image with 离散盒子空间是卷积不同尺度的合照滤波器
box lters at various scales. A comparison between these two scale-spaces is proposed in Section 3.
Feature detection During the detection step, the local maxima in the box-space of the \determinant   
of Hessian" operator are used to select interest point candidates (Section 4). These candidates  用Hessian定位盒子滤波器空间的局部最大值
are then validated if the response is above a given threshold. Both the scale and location of these
candidates are then rened using quadratic tting. Typically, a few hundred interest points are   通过曲线拟合定位
detected in a megapixel image.
Feature description The purpose of the next step described in Section 5 is to build a descriptor  用每个点的领域变域来描述 仿射不变,基于视点
of the neighborhood of each point of interest that is invariant to view-point changes. Thanks to

multi-scale analysis, the selection of these points in the box-space provides scale and translation 多尺度空间会导致尺度和平移不变
invariance. To achieve rotation invariance, a dominant orientation is dened by considering the local  旋转不变,局部梯度方向决定
gradient orientation distribution, estimated from Haar wavelets. Using a spatial localization grid, a
64-dimensional descriptor is then built, based on rst order statistics of Haar wavelets coecients.
Feature matching Finally, when considering the image matching task (e.g. for image registration,
object detection, or image indexation), the local descriptors from several images are matched.
Exhaustive comparison is performed by computing the Euclidean distance between all potential
matching pairs. A nearest-neighbor distance-ratio matching criterion is then used to reduce mismatches,
combined with an optional RANSAC-based technique [21, 20] for geometric consistency
checking.
Outline The rest of the paper is structured as follows
{ Section 2 SURF multi-scale representation based on box lters;
{ Section 3 Comparison with linear scale space analysis;
{ Section 4 Interest points detection;
{ Section 5 Invariant descriptor construction and comparison;
{ Section 6 Experimental validation and comparison with other approaches.

时间: 2024-07-30 10:48:52

SURF算子(1)的相关文章

【OpenCV入门教程之十七】OpenCV重映射 & SURF特征点检测合辑

本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/30974513 作者:毛星云(浅墨)    微博:http://weibo.com/u/1723155442 知乎:http://www.zhihu.com/people/mao-xing-yun 邮箱: [email protected] 写作当前博文时配套使用的OpenCV版本: 2.4.9 本篇文章中,我们一起探讨了OpenCV中

【OpenCV新手教程之十八】OpenCV仿射变换 & SURF特征点描写叙述合辑

本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/33320997 作者:毛星云(浅墨)    微博:http://weibo.com/u/1723155442 知乎:http://www.zhihu.com/people/mao-xing-yun 邮箱: [email protected] 写作当前博文时配套使用的OpenCV版本号: 2.4.9 本篇文章中.我们一起探讨了OpenCV

【OpenCV入门教程之十八】OpenCV仿射变换 & SURF特征点描述合辑

本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/33320997 作者:毛星云(浅墨)    微博:http://weibo.com/u/1723155442 知乎:http://www.zhihu.com/people/mao-xing-yun 邮箱: [email protected] 写作当前博文时配套使用的OpenCV版本: 2.4.9 本篇文章中,我们一起探讨了OpenCV中

【OpenCV新手教程之十七】OpenCV重映射 & SURF特征点检測合辑

本系列文章由@浅墨_毛星云 出品.转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/30974513 作者:毛星云(浅墨)    微博:http://weibo.com/u/1723155442 知乎:http://www.zhihu.com/people/mao-xing-yun 邮箱: [email protected] 写作当前博文时配套使用的OpenCV版本号: 2.4.9 本篇文章中,我们一起探讨了OpenCV

OpenCV中feature2D学习——FAST特征点检测与SIFT/SURF/BRIEF特征提取与匹配

在前面的文章<OpenCV中feature2D学习--FAST特征点检测>中讲了利用FAST算子进行特征点检测,这里尝试使用FAST算子来进行特征点检测,并结合SIFT/SURF/BRIEF算子进行特征点提取和匹配. I.结合SIFT算子进行特征点提取和匹配 由于数据类型的不同,SIFT和SURF算子只能采用FlannBasedMatcher或者BruteForceMatcher来进行匹配(参考OpenCV中feature2D学习--BFMatcher和FlannBasedMatcher).

【opencv入门】重映射 &amp; SURF特征点检测合辑

一.OpenCV重映射 1.重映射的概念简析 重映射,就是把一幅图像中某位置的像素放置到另一个图片指定位置的过程.为了完成映射过程, 我们需要获得一些插值为非整数像素的坐标,因为源图像与目标图像的像素坐标不是一一对应的.一般情况下,我们通过重映射来表达每个像素的位置 (x,y),像这样 : g(x,y) = f ( h(x,y) ) 在这里, g() 是目标图像, f() 是源图像, 而h(x,y) 是作用于 (x,y) 的映射方法函数. 来看个例子.若有一幅图像 I ,想满足下面的条件作重映射

OpenCV中feature2D学习——FAST特征点检测

在前面的文章<OpenCV中feature2D学习--SURF和SIFT算子实现特征点检测>中讲了利用SIFT和SURF算子进行特征点检测,这里尝试使用FAST算子来进行特征点检测. FAST的全名是:Features from Accelerated Segment Test,主要特点值计算速度快,比已知的其他特征点检测算法要快很多倍,可用于计算机视觉应用的实时场景.目前以其高计算效率(computational performance).高可重复性(highrepeatability)成为

opencv中的SVM图像分类(二)

opencv中的SVM图像分类(二) 标签: svm图像 2015-07-30 08:45 8296人阅读 评论(35) 收藏 举报  分类: [opencv应用](5)  版权声明:本文为博主原创文章,未经博主允许不得转载. 目录(?)[+] 原创作品 转载请注明出http://blog.csdn.net/always2015/article/details/47107129 上一篇博文对图像分类理论部分做了比较详细的讲解,这一篇主要是对图像分类代码的实现进行分析.理论部分我们谈到了使用BOW

Appearance-Based Loop Closure Detection for Online Large-Scale and Long-Term Operation

Abstract: 本文提出一种用于大规模的长期回环检测,基于一种内存管理方法:限制用于回环检测的位置数目,以满足实时性要求. introduction: 大场景存在的最关键问题:随着场景增大,回环检测处理的数据量增大,可能会产生延时.该论文的研究重心在于设计一种在线的基于外观回环检测方法.为了限制搜索之前经过位置的时间,在贝叶斯框架下采用动态管理用于闭环检测的位置.Working Memory的大小取决于需要处理实时获得图片的时间,保留最近且最常观测到的位置,将其他的位置放入Long Term