1. 信号量Semaphore的介绍
我们以一个停车场运作为例来说明信号量的作用。假设停车场只有三个车位,一开始三个车位都是空的。这时如果同时来了三辆车,看门人允许其中它们进入进入,然后放下车拦。以后来的车必须在入口等待,直到停车场中有车辆离开。这时,如果有一辆车离开停车场,看门人得知后,打开车拦,放入一辆,如果又离开一辆,则又可以放入一辆,如此往复。
在这个停车场系统中,车位是公共资源,每辆车好比一个线程,看门人起的就是信号量的作用。信号量是一个非负整数,表示了当前公共资源的可用数目(在上面的例子中可以用空闲的停车位类比信号量),当一个线程要使用公共资源时(在上面的例子中可以用车辆类比线程),首先要查看信号量,如果信号量的值大于1,则将其减1,然后去占有公共资源。如果信号量的值为0,则线程会将自己阻塞,直到有其它线程释放公共资源。
在信号量上我们定义两种操作: acquire(获取) 和 release(释放)。当一个线程调用acquire操作时,它要么通过成功获取信号量(信号量减1),要么一直等下去,直到有线程释放信号量,或超时。release(释放)实际上会将信号量的值加1,然后唤醒等待的线程。
信号量主要用于两个目的,一个是用于多个共享资源的互斥使用,另一个用于并发线程数的控制。
2. 信号量Semaphore的源码分析
在Java的并发包中,Semaphore类表示信号量。Semaphore内部主要通过AQS(AbstractQueuedSynchronizer)实现线程的管理。Semaphore有两个构造函数,参数permits表示许可数,它最后传递给了AQS的state值。线程在运行时首先获取许可,如果成功,许可数就减1,线程运行,当线程运行结束就释放许可,许可数就加1。如果许可数为0,则获取失败,线程位于AQS的等待队列中,它会被其它释放许可的线程唤醒。在创建Semaphore对象的时候还可以指定它的公平性。一般常用非公平的信号量,非公平信号量是指在获取许可时先尝试获取许可,而不必关心是否已有需要获取许可的线程位于等待队列中,如果获取失败,才会入列。而公平的信号量在获取许可时首先要查看等待队列中是否已有线程,如果有则入列。
构造函数源代码
//非公平的构造函数 public Semaphore(int permits) { sync = new NonfairSync(permits); } //通过fair参数决定公平性 public Semaphore(int permits, boolean fair) { sync = fair ? new FairSync(permits) : new NonfairSync(permits); }
acquire源代码
public void acquire() throws InterruptedException { sync.acquireSharedInterruptibly(1); } public final void acquireSharedInterruptibly(int arg) throws InterruptedException { if (Thread.interrupted()) throw new InterruptedException(); if (tryAcquireShared(arg) < 0) doAcquireSharedInterruptibly(arg); } final int nonfairTryAcquireShared(int acquires) { for (;;) { int available = getState(); int remaining = available - acquires; if (remaining < 0 || compareAndSetState(available, remaining)) return remaining; } }
可以看出,如果remaining <0 即获取许可后,许可数小于0,则获取失败,在doAcquireSharedInterruptibly方法中线程会将自身阻塞,然后入列。
release源代码
public void release() { sync.releaseShared(1); } public final boolean releaseShared(int arg) { if (tryReleaseShared(arg)) { doReleaseShared(); return true; } return false; } protected final boolean tryReleaseShared(int releases) { for (;;) { int current = getState(); int next = current + releases; if (next < current) // overflow throw new Error("Maximum permit count exceeded"); if (compareAndSetState(current, next)) return true; } }
可以看出释放许可就是将AQS中state的值加1。然后通过doReleaseShared唤醒等待队列的第一个节点。可以看出Semaphore使用的是AQS的共享模式,等待队列中的第一个节点,如果第一个节点成功获取许可,又会唤醒下一个节点,以此类推。
3. 使用示例
package javalearning; import java.util.Random; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util.concurrent.Semaphore; public class SemaphoreDemo { private Semaphore smp = new Semaphore(3); private Random rnd = new Random(); class TaskDemo implements Runnable{ private String id; TaskDemo(String id){ this.id = id; } @Override public void run(){ try { smp.acquire(); System.out.println("Thread " + id + " is working"); Thread.sleep(rnd.nextInt(1000)); smp.release(); System.out.println("Thread " + id + " is over"); } catch (InterruptedException e) { } } } public static void main(String[] args){ SemaphoreDemo semaphoreDemo = new SemaphoreDemo(); //注意我创建的线程池类型, ExecutorService se = Executors.newCachedThreadPool(); se.submit(semaphoreDemo.new TaskDemo("a")); se.submit(semaphoreDemo.new TaskDemo("b")); se.submit(semaphoreDemo.new TaskDemo("c")); se.submit(semaphoreDemo.new TaskDemo("d")); se.submit(semaphoreDemo.new TaskDemo("e")); se.submit(semaphoreDemo.new TaskDemo("f")); se.shutdown(); } }
运行结果
Thread c is working
Thread b is working
Thread a is working
Thread c is over
Thread d is working
Thread b is over
Thread e is working
Thread a is over
Thread f is working
Thread d is over
Thread e is over
Thread f is over
可以看出,最多同时有三个线程并发执行,也可以认为有三个公共资源(比如计算机的三个串口)。
4. 参考内容
[1] http://my.oschina.net/cloudcoder/blog/362974