简单数论(poj 1152)

题目:An Easy Problem!

题意:求给出数的最小进制。

思路:暴力WA;

discuss中的idea:

给出数ABCD,若存在n 满足   (A* n^3 +B*n^2+C*n^1+D*n^0)%(n-1) == 0

则((A* n^3)%(n-1) +(B*n^2)%(n-1)+(C*n^1)%(n-1)+D%(n-1))%(n-1) == 0

                                    (A+B+C+D)%(n-1) == 0

NB!

是时候深入的看下数论了;

#include <iostream>
#include <algorithm>
#include <stdlib.h>
#include <time.h>
#include <cmath>
#include <cstdio>
#include <string>
#include <cstring>
#include <vector>
#include <queue>
#include <stack>
#include <set>

#define c_false ios_base::sync_with_stdio(false); cin.tie(0)
#define INF 0x3f3f3f3f
#define INFL 0x3f3f3f3f3f3f3f3f
#define zero_(x,y) memset(x , y , sizeof(x))
#define zero(x) memset(x , 0 , sizeof(x))
#define MAX(x) memset(x , 0x3f ,sizeof(x))
#define swa(x,y) {LL s;s=x;x=y;y=s;}
using namespace std ;
#define N 50005
const double PI = acos(-1.0);
typedef long long LL ;

int cal(char x){
    if(x >= ‘0‘ && x <= ‘9‘)
        return x - ‘0‘;
    else if(x >= ‘A‘ && x <= ‘Z‘)
        return x - ‘A‘ +10;
    else if(x >= ‘a‘ && x <= ‘z‘)
        return x - ‘a‘ +36;
    return 0;
}
string s;
int main(){
    //freopen("in.txt","r",stdin);
    //freopen("out.txt","w",stdout);
    while(cin>>s){
        int n = s.size();
        int maxn = 0,sum = 0;
        for(int i = 0;i < n;i++){
            sum +=cal(s[i]);
            maxn = max(maxn, cal(s[i]));
        }
        int  flag = 1;
        for(int i = maxn+1; i <= 62; i++)
            if(sum%(i-1) == 0){
                printf("%d\n",i);
                flag = 0;
                break;
            }
        if(flag)
            printf("such number is impossible!\n");
    }
    return 0;
}
时间: 2024-10-23 07:29:14

简单数论(poj 1152)的相关文章

hdu 1395 2^x mod n = 1 (简单数论)

题目大意: 求出一个最小的x 使得 2的x次方对n取模为1 思路分析: 若要 a*b%p=1  要使得b存在 则 gcd (a,p)=1. 那么我们应用到这个题目上来. 当n为偶数 2^x 也是偶数,那么gcd 肯定不是1.故这个是不存在的. 那么n为奇数的时候,也就一定是1了. 所以直接暴力找. #include <iostream> #include <cstdio> using namespace std; int main() { int n; while(scanf(&q

HDOJ 1163 Eddy&#39;s digital Roots(简单数论)

[思路]:http://blog.csdn.net/iamskying/article/details/4738838 求解思路: 现在分析一个问题,假设将十位数为a,个位数为b的一个整数表示为ab,则推导得 ab*ab = (a*10+b)*(a*10+b) = 100*a*a+10*2*a*b+b*b 根据上式可得:root(ab*ab) = a*a+2*a*b+b*b = (a+b)*(a+b);[公式一] 同理也可证得:root(ab*ab*ab) = (a+b)*(a+b)*(a+b)

[sg简单应用] poj 1082 Calendar Game

这一篇文章专门整理一下研究过的Android面试题,内容会随着学习不断的增加,如果答案有错误,希望大家可以指正 1.简述Activity的生命周期 当Activity开始启动的时候,首先调用onCreate(),onStart(),onResume()方法,此时Activity对用户来说,是可见的状态 当Activity从可见状态变为被Dialog遮挡的状态的时候,会调用onPause()方法,此时的Activity对用户可见,但是不能相 应用户的点击事件 当Activity从可见状态变为被其他

简单数论

1.求gcd,算法为欧几里德(辗转相除法) 2.解一元二次方程,算法为扩展欧几里德 3.求素数,算法为埃氏筛法 4.快速进行幂运算,算法快速幂(反复平方) 5.解线性同余方程,求逆元(基于exgcd) 6.其它用来优化模运算的定理,欧拉定理(费马小定理),相应的函数欧拉函数 简单数论

POJ 1152 An Easy Problem! (取模运算性质)

题目链接:POJ 1152 An Easy Problem! 题意:求一个N进制的数R,保证R能被(N-1)整除时最小的N. 第一反应是暴力.N的大小0到62.发现其中将N进制话成10进制时,数据会溢出.这里有个整除,即(N-1)取模为0. 例子:a1a2a3表示一个N进制的数R,化成10进制: (a1*N*N+a2*N+a3)%(N-1)==((a1*N*N)%(N-1)+(a2*N)%(N-1)+(a3)%(N-1))%(N-1)==(a1+a2+a3)%(N-1): 这样防止了数据的溢出.

简单数论之整除&质因数分解&唯一分解定理

[整除] 若a被b整除,即a是b的倍数,那么记作b|a("|"是整除符号),读作"a整除b"或"b能被a整除".a叫做b的约数(或因数),b叫做a的倍数. 简单数论之整除&质因数分解&唯一分解定理 原文地址:https://www.cnblogs.com/zjd-ac/p/10351608.html

POJ 2826 An Easy Problem!(简单数论)

Description Have you heard the fact "The base of every normal number system is 10" ? Of course, I am not talking about number systems like Stern Brockot Number System. This problem has nothing to do with this fact but may have some similarity. Y

数论poj题目

http://blog.sina.com.cn/s/blog_76f6777d0101ir50.html 1.素数,整数分解,欧拉函数 素数是可能数论里最永恒,最经典的问题了.素数的判断,筛法求素数,大素数的判断···还有很多其他问题都会用到素数. *最水最水的:(心情不爽时用来解闷吧) pku1365 Prime Land pku2034 Anti-prime Sequences pku2739 Sum of Consecutive Prime Numbers pku3518 Prime Ga

lightoj 1245 Harmonic Number (II)(简单数论)

题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1245 题意:求f(n)=n/1+n/2.....n/n,其中n/i保留整数 显然一眼看不出什么规律.而且n有2e31直接暴力肯定要出事情 但是f=n/x这个函数很好关于y = x 对称对称点刚好是sqrt(n) 于是就简单了直接求sum+n/i (i*i<n && i >=1) 然后乘以2,再减去i*i即可. 这个i*i表示的是什么呢,由于对称上半部份的值完