【bzoj3144】[Hnoi2013]切糕 网络流最小割

题目描述

输入

第一行是三个正整数P,Q,R,表示切糕的长P、 宽Q、高R。第二行有一个非负整数D,表示光滑性要求。接下来是R个P行Q列的矩阵,第z个 矩阵的第x行第y列是v(x,y,z) (1≤x≤P, 1≤y≤Q, 1≤z≤R)。 
100%的数据满足P,Q,R≤40,0≤D≤R,且给出的所有的不和谐值不超过1000。

输出

仅包含一个整数,表示在合法基础上最小的总不和谐值。

样例输入

2 2 2
1
6 1
6 1
2 6
2 6

样例输出

6



题目大意

给定一个p行q列的矩阵,每个位置可以选择一个1~r的整数,选择不同的数有不同的代价,并且相邻的两个位置上的数的差的绝对值不能超过d,求最小总代价

题解

网络流最小割

看到这题首先一脸懵**,不知道怎么搞,然后想起省选讲题时清华学长所说:条件限制强、数据不大不小的题基本上就是网络流。

于是想了一下但是没有写出来,直到Apio2017时讲到了这道题才明白。

首先,如果是网络流,一定是最小割模型或费用流模型。但费用流很难表达相邻相差不超过d的条件,于是放弃,想最小割。

假如没有限制条件,那么可以对矩阵每个位置拆出r+1个点,连上r条边,边权代表代价。跑最小割即可。(如果不是为了网络流不会这么思考)

然后考虑限制条件,那么应该有:割断边位置超过d的不应算作最小割的一部分。那么让它不为最小割即可。

我们可以在位置相差超过d的点之间加一条容量为inf的边,这条边不会被割掉,则其两边的边一定会被割掉。

故连边(k,i)->(k‘,i-d),容量为inf,其中编号为k和k‘的点相邻。

这样建完图以后跑最小割即为答案。

#include <cstdio>
#include <cstring>
#include <queue>
#define N 70010
#define M 1000010
#define inf 0x3f3f3f3f
#define pos(i , j , k) n * m * (k) + m * (i - 1) + j
using namespace std;
queue<int> q;
int head[N] , to[M] , val[M] , next[M] , cnt = 1 , s , t , dis[N];
void add(int x , int y , int z)
{
    to[++cnt] = y , val[cnt] = z , next[cnt] = head[x] , head[x] = cnt;
    to[++cnt] = x , val[cnt] = 0 , next[cnt] = head[y] , head[y] = cnt;
}
bool bfs()
{
    int x , i;
    memset(dis , 0 , sizeof(dis));
    while(!q.empty()) q.pop();
    dis[s] = 1 , q.push(s);
    while(!q.empty())
    {
        x = q.front() , q.pop();
        for(i = head[x] ; i ; i = next[i])
        {
            if(val[i] && !dis[to[i]])
            {
                dis[to[i]] = dis[x] + 1;
                if(to[i] == t) return 1;
                q.push(to[i]);
            }
        }
    }
    return 0;
}
int dinic(int x , int low)
{
    if(x == t) return low;
    int temp = low , i , k;
    for(i = head[x] ; i ; i = next[i])
    {
        if(val[i] && dis[to[i]] == dis[x] + 1)
        {
            k = dinic(to[i] , min(temp , val[i]));
            if(!k) dis[to[i]] = 0;
            val[i] -= k , val[i ^ 1] += k;
            if(!(temp -= k)) break;
        }
    }
    return low - temp;
}
int main()
{
    int n , m , p , d , x , i , j , k , ans = 0;
    scanf("%d%d%d%d" , &n , &m , &p , &d) , s = 0 , t = n * m * (p + 1) + 1;
    for(i = 1 ; i <= n ; i ++ )
        for(j = 1 ; j <= m ; j ++ )
            add(s , pos(i , j , 0) , inf) , add(pos(i , j , p) , t , inf);
    for(k = 1 ; k <= p ; k ++ )
        for(i = 1 ; i <= n ; i ++ )
            for(j = 1 ; j <= m ; j ++ )
                scanf("%d" , &x) , add(pos(i , j , k - 1) , pos(i , j , k) , x);
    for(i = 1 ; i <= n ; i ++ )
    {
        for(j = 1 ; j <= m ; j ++ )
        {
            for(k = d + 1 ; k < p ; k ++ )
            {
                if(i > 1) add(pos(i , j , k) , pos(i - 1 , j , k - d) , inf);
                if(i < n) add(pos(i , j , k) , pos(i + 1 , j , k - d) , inf);
                if(j > 1) add(pos(i , j , k) , pos(i , j - 1 , k - d) , inf);
                if(j < m) add(pos(i , j , k) , pos(i , j + 1 , k - d) , inf);
            }
        }
    }
    while(bfs()) ans += dinic(s , inf);
    printf("%d\n" , ans);
    return 0;
}
时间: 2024-12-10 19:30:00

【bzoj3144】[Hnoi2013]切糕 网络流最小割的相关文章

【BZOJ 3144】 3144: [Hnoi2013]切糕 (最小割模型)

3144: [Hnoi2013]切糕 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1764  Solved: 965 Description Input 第一行是三个正整数P,Q,R,表示切糕的长P. 宽Q.高R.第二行有一个非负整数D,表示光滑性要求.接下来是R个P行Q列的矩阵,第z个 矩阵的第x行第y列是v(x,y,z) (1≤x≤P, 1≤y≤Q, 1≤z≤R). 100%的数据满足P,Q,R≤40,0≤D≤R,且给出的所有的不和谐值不超

BZOJ_3144_[Hnoi2013]切糕_最小割

Description Input 第一行是三个正整数P,Q,R,表示切糕的长P. 宽Q.高R.第二行有一个非负整数D,表示光滑性要求.接下来是R个P行Q列的矩阵,第z个 矩阵的第x行第y列是v(x,y,z) (1≤x≤P, 1≤y≤Q, 1≤z≤R). 100%的数据满足P,Q,R≤40,0≤D≤R,且给出的所有的不和谐值不超过1000. Output 仅包含一个整数,表示在合法基础上最小的总不和谐值. Sample Input 2 2 2 1 6 1 6 1 2 6 2 6 Sample O

[BZOJ 3144] [Hnoi2013] 切糕 【最小割】

题目链接:BZOJ - 3144 题目分析 题意:在 P * Q 的方格上填数字,可以填 [1, R] . 在 (x, y) 上填 z 会有 V[x][y][z] 的代价.限制:相邻两个格子填的数字的差的绝对值不能超过 D . 求一个合法的最小总代价. 这道题是一个最小割模型,直接说建图吧. 建图:每个点 (x, y) 拆成 R 个点,(x, y, z) 代表 (x, y) 填 z. 然后从 S 向 (*, *, 1) 连 INF ,从 (*, *, R) 向 T 连 INF . 然后对于 (i

【BZOJ 3144】 [Hnoi2013]切糕 真&#183;最小割

一开始一脸懵逼后来发现,他不就是割吗,我们只要满足条件就割就行了,于是我们把他连了P*Q*R条边,然而我们要怎样限制D呢?我们只要满足对于任意相邻的两条路,只要其有个口大于D就不行就好了因此我们只要把每个点向离他D距离的下面的店连一条Inf连线就可以啦,因此我们就满足了一定是所有相邻的路径上存在不超过距离D的缺口,由于满足这条性质因此至少存在一层两两之间距离不超过D的膜因此最终答案一定是每条路上割一个,因此就让他跑去把! #include <cstdio> #include <cstri

二分图&amp;网络流&amp;最小割等问题的总结

二分图基础: 最大匹配:匈牙利算法 最小点覆盖=最大匹配 最小边覆盖=总节点数-最大匹配 最大独立集=点数-最大匹配 网络流: 带下界网络流 最小割问题的总结: *意义 1.加inf的边表示不能被割,通常用于体现某个点必须属于某个集合 连边(s,u,w)代表如果u不在s割的话需要付出代价w 2.连边(u,v,w)代表如果u在s割,v在t割需要付出代价w 但注意,如果u在t割,v在s割是不需要付出代价的. 那么如果连边(u,v,w)以及(v,u,w)则说明当u与v所属割不同的时候需要付出代价w *

HDU 2435 There is a war (网络流-最小割)

There is a war Problem Description There is a sea. There are N islands in the sea. There are some directional bridges connecting these islands. There is a country called Country One located in Island 1. There is another country called Country Another

【bzoj3630】[JLOI2014]镜面通道 对偶图+计算几何+网络流最小割

题目描述 在一个二维平面上,有一个镜面通道,由镜面AC,BD组成,AC,BD长度相等,且都平行于x轴,B位于(0,0).通道中有n个外表面为镜面的光学元件,光学元件α为圆形,光学元件β为矩形(这些元件可以与其他元件和通道有交集,具体看下图).光线可以在AB上任一点以任意角度射入通道,光线不会发生削弱.当出现元件与元件,元件和通道刚好接触的情况视为光线无法透过(比如两圆相切).现在给出通道中所有元件的信息(α元件包括圆心坐标和半径xi,yi,ri,β元件包括左下角和右上角坐标x1,y1,x2,y2

【bzoj2127】happiness 网络流最小割

题目描述 高一一班的座位表是个n*m的矩阵,经过一个学期的相处,每个同学和前后左右相邻的同学互相成为了好朋友.这学期要分文理科了,每个同学对于选择文科与理科有着自己的喜悦值,而一对好朋友如果能同时选文科或者理科,那么他们又将收获一些喜悦值.作为计算机竞赛教练的scp大老板,想知道如何分配可以使得全班的喜悦值总和最大. 输入 第一行两个正整数n,m.接下来是六个矩阵第一个矩阵为n行m列 此矩阵的第i行第j列的数字表示座位在第i行第j列的同学选择文科获得的喜悦值.第二个矩阵为n行m列 此矩阵的第i行

【bzoj2132】圈地计划 网络流最小割

题目描述 最近房地产商GDOI(Group of Dumbbells Or Idiots)从NOI(Nuts Old Idiots)手中得到了一块开发土地.据了解,这块土地是一块矩形的区域,可以纵横划分为N×M块小区域.GDOI要求将这些区域分为商业区和工业区来开发.根据不同的地形环境,每块小区域建造商业区和工业区能取得不同的经济价值.更具体点,对于第i行第j列的区域,建造商业区将得到Aij收益,建造工业区将得到Bij收益.另外不同的区域连在一起可以得到额外的收益,即如果区域(I,j)相邻(相邻