题目链接:https://vjudge.net/problem/POJ-2289
Jamie‘s Contact Groups
Time Limit: 7000MS | Memory Limit: 65536K | |
Total Submissions: 8147 | Accepted: 2736 |
Description
Jamie is a very popular girl and has quite a lot of friends, so she always keeps a very long contact list in her cell phone. The contact list has become so long that it often takes a long time for her to browse through the whole list to find a friend‘s number. As Jamie‘s best friend and a programming genius, you suggest that she group the contact list and minimize the size of the largest group, so that it will be easier for her to search for a friend‘s number among the groups. Jamie takes your advice and gives you her entire contact list containing her friends‘ names, the number of groups she wishes to have and what groups every friend could belong to. Your task is to write a program that takes the list and organizes it into groups such that each friend appears in only one of those groups and the size of the largest group is minimized.
Input
There will be at most 20 test cases. Ease case starts with a line containing two integers N and M. where N is the length of the contact list and M is the number of groups. N lines then follow. Each line contains a friend‘s name and the groups the friend could belong to. You can assume N is no more than 1000 and M is no more than 500. The names will contain alphabet letters only and will be no longer than 15 characters. No two friends have the same name. The group label is an integer between 0 and M - 1. After the last test case, there is a single line `0 0‘ that terminates the input.
Output
For each test case, output a line containing a single integer, the size of the largest contact group.
Sample Input
3 2 John 0 1 Rose 1 Mary 1 5 4 ACM 1 2 3 ICPC 0 1 Asian 0 2 3 Regional 1 2 ShangHai 0 2 0 0
Sample Output
2 2
Source
题解:
多重匹配:
1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <cstdlib> 5 #include <string> 6 #include <vector> 7 #include <map> 8 #include <set> 9 #include <queue> 10 #include <sstream> 11 #include <algorithm> 12 using namespace std; 13 const int INF = 2e9; 14 const int MOD = 1e9+7; 15 const int MAXM = 5e2+10; 16 const int MAXN = 1e3+10; 17 18 int uN, vN; 19 int num[MAXM], linker[MAXM][MAXN]; 20 bool g[MAXN][MAXM], used[MAXM]; 21 22 bool dfs(int u) 23 { 24 for(int v = 0; v<vN; v++) 25 if(g[u][v] && !used[v]) 26 { 27 used[v] = true; 28 if(linker[v][0]<num[v]) 29 { 30 linker[v][++linker[v][0]] = u; 31 return true; 32 } 33 for(int i = 1; i<=num[v]; i++) 34 if(dfs(linker[v][i])) 35 { 36 linker[v][i] = u; 37 return true; 38 } 39 } 40 return false; 41 } 42 43 bool hungary(int mid) 44 { 45 for(int i = 0; i<vN; i++) 46 { 47 num[i] = mid; 48 linker[i][0] = 0; 49 } 50 for(int u = 0; u<uN; u++) 51 { 52 memset(used, false, sizeof(used)); 53 if(!dfs(u)) return false; 54 } 55 return true; 56 } 57 58 char tmp[100000]; 59 int main() 60 { 61 while(scanf("%d%d", &uN, &vN) && (uN||vN)) 62 { 63 memset(g, false, sizeof(g)); 64 getchar(); 65 for(int i = 0; i<uN; i++) 66 { 67 gets(tmp); 68 int j = 0, len = strlen(tmp); 69 while(tmp[j]!=‘ ‘ && j<len) j++; 70 j++; 71 for(int v = 0; j<=len; j++) 72 { 73 if(tmp[j]==‘ ‘||j==len) 74 { 75 g[i][v] = true; 76 v = 0; 77 } 78 else v = v*10+(tmp[j]-‘0‘); 79 } 80 } 81 82 int l = 1, r = uN; 83 while(l<=r) 84 { 85 int mid = (l+r)>>1; 86 if(hungary(mid)) 87 r = mid - 1; 88 else 89 l = mid + 1; 90 } 91 printf("%d\n", l); 92 } 93 }
最大流:
1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <cstdlib> 5 #include <string> 6 #include <vector> 7 #include <map> 8 #include <set> 9 #include <queue> 10 #include <sstream> 11 #include <algorithm> 12 using namespace std; 13 const int INF = 2e9; 14 const int MOD = 1e9+7; 15 const int MAXM = 5e2+10; 16 const int MAXN = 2e3+10; 17 18 struct Edge 19 { 20 int to, next, cap, flow; 21 }edge[MAXN*MAXN]; 22 int tot, head[MAXN]; 23 24 int uN, vN, maze[MAXN][MAXN]; 25 int gap[MAXN], dep[MAXN], pre[MAXN], cur[MAXN]; 26 27 void add(int u, int v, int w) 28 { 29 edge[tot].to = v; edge[tot].cap = w; edge[tot].flow = 0; 30 edge[tot].next = head[u]; head[u] = tot++; 31 edge[tot].to = u; edge[tot].cap = 0; edge[tot].flow = 0; 32 edge[tot].next = head[v]; head[v] = tot++; 33 } 34 35 int sap(int start, int end, int nodenum) 36 { 37 memset(gap,0,sizeof(gap)); 38 memset(dep,0,sizeof(dep)); 39 memcpy(cur,head,sizeof(head)); 40 41 int u = start; 42 pre[u] = -1; 43 gap[0] = nodenum; 44 int maxflow = 0; 45 while(dep[start]<nodenum) 46 { 47 bool flag = false; 48 for(int i = cur[u]; i!=-1; i=edge[i].next) 49 { 50 int v = edge[i].to; 51 if(edge[i].cap-edge[i].flow && dep[v]+1==dep[u]) 52 { 53 flag = true; 54 cur[u] = pre[v] = i; 55 u = v; 56 break; 57 } 58 } 59 60 if(flag) 61 { 62 if(u==end) 63 { 64 int minn = INF; 65 for(int i = pre[u]; i!=-1; i=pre[edge[i^1].to]) 66 if(minn>edge[i].cap-edge[i].flow) 67 minn = edge[i].cap-edge[i].flow; 68 for(int i = pre[u]; i!=-1; i=pre[edge[i^1].to]) 69 { 70 edge[i].flow += minn; 71 edge[i^1].flow -= minn; 72 } 73 u = start; 74 maxflow += minn; 75 } 76 } 77 78 else 79 { 80 int minn = nodenum; 81 for(int i = head[u]; i!=-1; i=edge[i].next) 82 if(edge[i].cap-edge[i].flow && dep[edge[i].to]<minn) 83 { 84 minn = dep[edge[i].to]; 85 cur[u] = i; 86 } 87 gap[dep[u]]--; 88 if(gap[dep[u]]==0) break; 89 dep[u] = minn+1; 90 gap[dep[u]]++; 91 if(u!=start) u = edge[pre[u]^1].to; 92 } 93 } 94 return maxflow; 95 } 96 97 bool test(int mid) 98 { 99 tot = 0; 100 memset(head, -1, sizeof(head)); 101 for(int i = 0; i<uN; i++) 102 { 103 add(uN+vN, i, 1); 104 for(int j = 0; j<vN; j++) 105 if(maze[i][j]) 106 add(i, uN+j, 1); 107 } 108 for(int i = 0; i<vN; i++) 109 add(uN+i, uN+vN+1, mid); 110 111 int maxflow = sap(uN+vN, uN+vN+1, uN+vN+2); 112 return maxflow == uN; 113 } 114 115 char tmp[100000]; 116 int main() 117 { 118 while(scanf("%d%d", &uN, &vN) && (uN||vN)) 119 { 120 memset(maze, 0, sizeof(maze)); 121 getchar(); 122 for(int i = 0; i<uN; i++) 123 { 124 gets(tmp); 125 int j = 0, len = strlen(tmp); 126 while(tmp[j]!=‘ ‘ && j<len) j++; 127 j++; 128 for(int v = 0; j<=len; j++) 129 { 130 if(tmp[j]==‘ ‘||j==len) 131 { 132 maze[i][v] = 1; 133 v = 0; 134 } 135 else v = v*10+(tmp[j]-‘0‘); 136 } 137 } 138 139 int l = 1, r = uN; 140 while(l<=r) 141 { 142 int mid = (l+r)>>1; 143 if(test(mid)) 144 r = mid - 1; 145 else 146 l = mid + 1; 147 } 148 printf("%d\n", l); 149 } 150 }
POJ2289 Jamie's Contact Groups —— 二分图多重匹配/最大流 + 二分