kafka的设计初衷是希望作为一个统一的信息收集平台,能够实时的收集反馈信息,并需要能够支撑较大的数据量,且具备良好的容错能力.
1、持久性
kafka使用文件存储消息,这就直接决定kafka在性能上严重依赖文件系统的本身特性.且无论任何OS下,对文件系统本身的优化几乎没有可能.文件缓存/直接内存映射等是常用的手段.因为kafka是对日志文件进行append操作,因此磁盘检索的开支是较小的;同时为了减少磁盘写入的次数,broker会将消息暂时buffer起来,当消息的个数(或尺寸)达到一定阀值时,再flush到磁盘,这样减少了磁盘IO调用的次数.
2、性能
需要考虑的影响性能点很多,除磁盘IO之外,我们还需要考虑网络IO,这直接关系到kafka的吞吐量问题.kafka并没有提供太多高超的技巧;对于producer端,可以将消息buffer起来,当消息的条数达到一定阀值时,批量发送给broker;对于consumer端也是一样,批量fetch多条消息.不过消息量的大小可以通过配置文件来指定.对于kafka broker端,似乎有个sendfile系统调用可以潜在的提升网络IO的性能:将文件的数据映射到系统内存中,socket直接读取相应的内存区域即可,而无需进程再次copy和交换. 其实对于producer/consumer/broker三者而言,CPU的开支应该都不大,因此启用消息压缩机制是一个良好的策略;压缩需要消耗少量的CPU资源,不过对于kafka而言,网络IO更应该需要考虑.可以将任何在网络上传输的消息都经过压缩.kafka支持gzip/snappy等多种压缩方式.
3、生产者
负载均衡: producer将会和Topic下所有partition leader保持socket连接;消息由producer直接通过socket发送到broker,中间不会经过任何"路由层".事实上,消息被路由到哪个partition上,有producer客户端决定.比如可以采用"random""key-hash""轮询"等,如果一个topic中有多个partitions,那么在producer端实现"消息均衡分发"是必要的.
其中partition leader的位置(host:port)注册在zookeeper中,producer作为zookeeper client,已经注册了watch用来监听partition leader的变更事件.
异步发送:将多条消息暂且在客户端buffer起来,并将他们批量的发送到broker,小数据IO太多,会拖慢整体的网络延迟,批量延迟发送事实上提升了网络效率。不过这也有一定的隐患,比如说当producer失效时,那些尚未发送的消息将会丢失。
4、消费者
consumer端向broker发送"fetch"请求,并告知其获取消息的offset;此后consumer将会获得一定条数的消息;consumer端也可以重置offset来重新消费消息.
在JMS实现中,Topic模型基于push方式,即broker将消息推送给consumer端.不过在kafka中,采用了pull方式,即consumer在和broker建立连接之后,主动去pull(或者说fetch)消息;这中模式有些优点,首先consumer端可以根据自己的消费能力适时的去fetch消息并处理,且可以控制消息消费的进度(offset);此外,消费者可以良好的控制消息消费的数量,batch fetch.
其他JMS实现,消息消费的位置是有prodiver保留,以便避免重复发送消息或者将没有消费成功的消息重发等,同时还要控制消息的状态.这就要求JMS broker需要太多额外的工作.在kafka中,partition中的消息只有一个consumer在消费,且不存在消息状态的控制,也没有复杂的消息确认机制,可见kafka broker端是相当轻量级的.当消息被consumer接收之后,consumer可以在本地保存最后消息的offset,并间歇性的向zookeeper注册offset.由此可见,consumer客户端也很轻量级.
5、消息传送机制
对于JMS实现,消息传输担保非常直接:有且只有一次(exactly once).在kafka中稍有不同:
1) at most once: 最多一次,这个和JMS中"非持久化"消息类似.发送一次,无论成败,将不会重发.
2) at least once: 消息至少发送一次,如果消息未能接受成功,可能会重发,直到接收成功.
3) exactly once: 消息只会发送一次.
at most once: 消费者fetch消息,然后保存offset,然后处理消息;当client保存offset之后,但是在消息处理过程中出现了异常,导致部分消息未能继续处理.那么此后"未处理"的消息将不能被fetch到,这就是"at most once".
at least once: 消费者fetch消息,然后处理消息,然后保存offset.如果消息处理成功之后,但是在保存offset阶段zookeeper异常导致保存操作未能执行成功,这就导致接下来再次fetch时可能获得上次已经处理过的消息,这就是"at least once",原因offset没有及时的提交给zookeeper,zookeeper恢复正常还是之前offset状态.
exactly once: kafka中并没有严格的去实现(基于2阶段提交,事务),我们认为这种策略在kafka中是没有必要的.
通常情况下"at-least-once"是我们搜选.(相比at most once而言,重复接收数据总比丢失数据要好).
6、复制备份
kafka将每个partition数据复制到多个server上,任何一个partition有一个leader和多个follower(可以没有);备份的个数可以通过broker配置文件来设定.leader处理所有的read-write请求,follower需要和leader保持同步.Follower和consumer一样,消费消息并保存在本地日志中;leader负责跟踪所有的follower状态,如果follower"落后"太多或者失效,leader将会把它从replicas同步列表中删除.当所有的follower都将一条消息保存成功,此消息才被认为是"committed",那么此时consumer才能消费它.即使只有一个replicas实例存活,仍然可以保证消息的正常发送和接收,只要zookeeper集群存活即可.(不同于其他分布式存储,比如hbase需要"多数派"存活才行)
当leader失效时,需在followers中选取出新的leader,可能此时follower落后于leader,因此需要选择一个"up-to-date"的follower.选择follower时需要兼顾一个问题,就是新leaderserver上所已经承载的partition leader的个数,如果一个server上有过多的partition leader,意味着此server将承受着更多的IO压力.在选举新leader,需要考虑到"负载均衡".