The sum problem
Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 16197 Accepted Submission(s): 4843
Problem Description
Given a sequence 1,2,3,......N, your job is to calculate all the possible sub-sequences that the sum of the sub-sequence is M.
Input
Input contains multiple test cases. each case contains two integers N, M( 1 <= N, M <= 1000000000).input ends with N = M = 0.
Output
For each test case, print all the possible sub-sequence that its sum is M.The format is show in the sample below.print a blank line after each test case.
Sample Input
20 10 50 30 0 0
Sample Output
[1,4] [10,10] [4,8] [6,9] [9,11] [30,30] 解题思路: 不考虑子列的终点,而是考虑子列的起点和子列元素的个数,分别记为i,j。由等差数列求和公式,得(i+(i+j-1))*j/2==M ,即(2*i+j-1)*j/2==M(2式),故得i=(2*M/j-j+1)/2,将i,j代回2式,成立则[i,i+j-1]满足条件。注意j最小为1,而由2式,得(j+2*i)*j=2*M,而i>=1,故j<=(int)sqrt(2*M). 源代码: #include <stdio.h> #include <math.h> #include <stdlib.h> int main() { int N,M,i,j; while(scanf("%d%d",&N,&M) && M+N) { for(j=pow(2.0*M,0.5);j>0;j--) { i=(2*M/j-j+1)/2; if(j*(j+2*i-1)/2==M) printf("[%d,%d]\n",i,i+j-1); } printf("\n"); } system("pause"); return 0; }
时间: 2024-10-13 15:52:52