POJ3436 ACM Computer Factory 【最大流】

ACM Computer Factory

Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 5412   Accepted: 1863   Special Judge

Description

As you know, all the computers used for ACM contests must be identical, so the participants compete on equal terms. That is why all these computers are historically produced at the same factory.

Every ACM computer consists of P parts. When all these parts are present, the computer is ready and can be shipped to one of the numerous ACM contests.

Computer manufacturing is fully automated by using N various machines. Each machine removes some parts from a half-finished computer and adds some new parts (removing of parts is sometimes necessary as the parts cannot be added to a computer in
arbitrary order). Each machine is described by its performance (measured in computers per hour), input and output specification.

Input specification describes which parts must be present in a half-finished computer for the machine to be able to operate on it. The specification is a set of P numbers 0, 1 or 2 (one number for each part), where 0 means that corresponding part
must not be present, 1 — the part is required, 2 — presence of the part doesn‘t matter.

Output specification describes the result of the operation, and is a set of P numbers 0 or 1, where 0 means that the part is absent, 1 — the part is present.

The machines are connected by very fast production lines so that delivery time is negligibly small compared to production time.

After many years of operation the overall performance of the ACM Computer Factory became insufficient for satisfying the growing contest needs. That is why ACM directorate decided to upgrade the factory.

As different machines were installed in different time periods, they were often not optimally connected to the existing factory machines. It was noted that the easiest way to upgrade the factory is to rearrange production lines. ACM directorate decided to
entrust you with solving this problem.

Input

Input file contains integers P N, then N descriptions of the machines. The description of ith machine is represented as by 2 P + 1 integers Qi Si,1 Si,2...Si,P Di,1 Di,2...Di,P,
where Qi specifies performance,Si,j — input specification for part jDi,k — output specification for part k.

Constraints

1 ≤ P ≤ 10, 1 ≤ ≤ 50, 1 ≤ Qi ≤ 10000

Output

Output the maximum possible overall performance, then M — number of connections that must be made, then M descriptions of the connections. Each connection between machines A and B must be described by three positive numbers A B W,
where W is the number of computers delivered from A to B per hour.

If several solutions exist, output any of them.

Sample Input

Sample input 1
3 4
15  0 0 0  0 1 0
10  0 0 0  0 1 1
30  0 1 2  1 1 1
3   0 2 1  1 1 1
Sample input 2
3 5
5   0 0 0  0 1 0
100 0 1 0  1 0 1
3   0 1 0  1 1 0
1   1 0 1  1 1 0
300 1 1 2  1 1 1
Sample input 3
2 2
100  0 0  1 0
200  0 1  1 1

Sample Output

Sample output 1
25 2
1 3 15
2 3 10
Sample output 2
4 5
1 3 3
3 5 3
1 2 1
2 4 1
4 5 1
Sample output 3
0 0

Hint

Bold texts appearing in the sample sections are informative and do not form part of the actual data.

Source

Northeastern Europe 2005, Far-Eastern Subregion

题意:一个电脑由n个部件组成,现在有m台机器,每台机器可以将一个组装状态的电脑组合成另一个状态。如(0, 1, 2)表示第一个部件未完成,第二个部件完成,第三个部件可完成可不完成。然后给出m个机器单位时间内能完成的任务数以及具体的输入和输出状态。求整个系统单位时间内的电脑成品产量以及具体的机器间的传输关联。

题解:这题可以转换成最大流来做,一个机器的输出状态可以跟另一个机器的输入状态关联,只要它们的状态“equals”,然后再设置一个超级源点和汇点,再就可以用Dinic解题了。

#include <stdio.h>
#include <string.h>
#define maxn 55
#define inf 0x3fffffff

struct Node {
    int in[10], out[10]; // 拆点
    int Q; // 容量
} M[maxn];
int G[maxn << 1][maxn << 1], que[maxn << 1], m, n, mp;
int G0[maxn << 1][maxn << 1], deep[maxn << 1], vis[maxn << 1];

bool equals(int a[], int b[]) {
    for(int k = 0; k < n; ++k) {
        if(a[k] != 2 && b[k] != 2 && a[k] != b[k])
            return false;
    }
    return true;
}

bool countLayer() {
    int i, id = 0, now, front = 0;
    memset(deep, 0, sizeof(deep));
    deep[0] = 1; que[id++] = 0;
    while(front < id) {
        now = que[front++];
        for(i = 0; i <= mp; ++i)
            if(G[now][i] && !deep[i]) {
                deep[i] = deep[now] + 1;
                if(i == mp) return true;
                que[id++] = i;
            }
    }
    return false;
}

int Dinic() {
    int i, id = 0, maxFlow = 0, minCut, pos, u, v, now;
    while(countLayer()) {
        memset(vis, 0, sizeof(vis));
        vis[0] = 1; que[id++] = 0;
        while(id) {
            now = que[id - 1];
            if(now == mp) {
                minCut = inf;
                for(i = 1; i < id; ++i) {
                    u = que[i - 1]; v = que[i];
                    if(G[u][v] < minCut) {
                        minCut = G[u][v]; pos = u;
                    }
                }
                maxFlow += minCut;
                for(i = 1; i < id; ++i) {
                    u = que[i - 1]; v = que[i];
                    G[u][v] -= minCut;
                    G[v][u] += minCut;
                }
                while(id && que[id - 1] != pos)
                    vis[que[--id]] = 0;
            } else {
                for(i = 0; i <= mp; ++i) {
                    if(G[now][i] && deep[now] + 1 == deep[i] && !vis[i]) {
                        que[id++] = i; vis[i] = 1; break;
                    }
                }
                if(i > mp) --id;
            }
        }
    }
    return maxFlow;
}

int main() {
    //freopen("stdin.txt", "r", stdin);
    int i, j, sum, count;
    while(scanf("%d%d", &n, &m) == 2) {
        memset(G, 0, sizeof(G));
        for(i = 1; i <= m; ++i) {
            scanf("%d", &M[i].Q);
            for(j = 0; j < n; ++j) scanf("%d", &M[i].in[j]);
            for(j = 0; j < n; ++j) scanf("%d", &M[i].out[j]);
            G[i][i + m] = M[i].Q;
        }
        // 连接出口跟入口
        for(i = 1; i <= m; ++i) {
            for(j = i + 1; j <= m; ++j) {
                if(equals(M[i].out, M[j].in))
                    G[i + m][j] = inf;
                if(equals(M[j].out, M[i].in))
                    G[j + m][i] = inf;
            }
        }
        // 设置超级源点和超级汇点
        for(i = 1; i <= m; ++i) { // 源点
            G[0][i] = inf;
            for(j = 0; j < n; ++j)
                if(M[i].in[j] == 1) {
                    G[0][i] = 0; break;
                }
        }
        mp = m << 1 | 1;
        for(i = 1; i <= m; ++i) { // 汇点
            G[i + m][mp] = inf;
            for(j = 0; j < n; ++j)
                if(M[i].out[j] != 1) {
                    G[i + m][mp] = 0; break;
                }
        }
        // 备份原图
        memcpy(G0, G, sizeof(G));
        sum = Dinic();
        count = 0;
        // 判断哪些路径有流走过
        for(i = m + 1; i < mp; ++i)
            for(j = 1; j <= m; ++j)
                if(G0[i][j] > G[i][j]) ++count;
        printf("%d %d\n", sum, count);
        // 输出机器间的关系
        if(count)
            for(i = m + 1; i < mp; ++i)
                for(j = 1; j <= m; ++j)
                    if(G0[i][j] > G[i][j])
                        printf("%d %d %d\n", i - m, j, G0[i][j] - G[i][j]);
    }
    return 0;
}
时间: 2024-10-02 02:29:26

POJ3436 ACM Computer Factory 【最大流】的相关文章

poj3436 ACM Computer Factory, 最大流,输出路径

POJ 3436 ACM Computer Factory 电脑公司生产电脑有N个机器,每个机器单位时间产量为Qi. 电脑由P个部件组成,每个机器工作时只能把有某些部件的半成品电脑(或什么都没有的空电脑)变成有另一些部件的半成品电脑或完整电脑(也可能移除某些部件).求电脑公司的单位时间最大产量,以及哪些机器有协作关系,即一台机器把它的产品交给哪些机器加工. Sample input 3 4 15  0 0 0  0 1 0 10  0 0 0  0 1 1 30  0 1 2  1 1 1 3

POJ-3436 ACM Computer Factory (最大流[Ford-Fulkerson])

ACM Computer Factory http://poj.org/problem?id=3436 Time Limit: 1000MS   Memory Limit: 65536K         Special Judge Description As you know, all the computers used for ACM contests must be identical, so the participants compete on equal terms. That i

POJ-3436 ACM Computer Factory(网络流EK)

As you know, all the computers used for ACM contests must be identical, so the participants compete on equal terms. That is why all these computers are historically produced at the same factory. Every ACM computer consists of P parts. When all these

Poj 3436 ACM Computer Factory (最大流)

题目链接: Poj 3436 ACM Computer Factory 题目描述: n个工厂,每个工厂能把电脑s态转化为d态,每个电脑有p个部件,问整个工厂系统在每个小时内最多能加工多少台电脑? 解题思路: 因为需要输出流水线要经过的工厂路径,如果要用电脑状态当做节点的话,就GG了.所以建图的时候要把工厂当做节点.对于节点i,能生产si电脑的节点可以进入节点i,能转化ei电脑的节点可以由i节点进入.要注意对于每一个节点要进行拆点,防止流量发生错误. 1 #include <queue> 2 #

poj 3436 ACM Computer Factory 最大流拆点+输出路径

题目链接: poj3436 题意: 每台ACM 计算机包含P 个部件,当所有这些部件都准备齐全后,计算机就可以组装了,组装好以后就可以交给竞赛队伍使用了.计算机的生产过程是全自动的,通过N 台不同的机器来完成.每台机器从一台半成品计算机中去掉一些部件,并加入一些新的部件(去除一些部件在有的时候是必须的,因为计算机的部件不能以任意的顺序组装).每台机器用它的性能(每小时组装多少台计算机).输入/输出规格来描述. 输入规格描述了机器在组装计算机时哪些部件必须准备好了.输入规格是由P 个整数组成,每个

POJ3436:ACM Computer Factory(最大流)

ACM Computer Factory Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9963   Accepted: 3738   Special Judge 题目链接:http://poj.org/problem?id=3436 Description: As you know, all the computers used for ACM contests must be identical, so the pa

POJ 3436 ACM Computer Factory(网络最大流)

http://poj.org/problem?id=3436 ACM Computer Factory Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5286   Accepted: 1813   Special Judge Description As you know, all the computers used for ACM contests must be identical, so the particip

POJ 3436 ACM Computer Factory (最大流 + 输出路径)

POJ 3436 ACM Computer Factory 链接:http://poj.org/problem?id=3436 题意:每台电脑有P部分,可以通过不同的机器来进行加工.有N台机器,每台机器用2 P +1 个整数来描述:Qi  Si,1  Si,2 ...  Si,p  Di,1  Di,2. ..  Di,p,其中Qi 指定了机器的性能,表示每小时加工的电脑数量.Si,j 为第j 部分的输入规格,0表示该部分不能被加工过,1表示该部分必须被加工过,2表示都可以.Di,k 为第k 部

解题报告 之 POJ3463 ACM Computer Factory

解题报告 之 POJ3463 ACM Computer Factory Description As you know, all the computers used for ACM contests must be identical, so the participants compete on equal terms. That is why all these computers are historically produced at the same factory. Every A