线程阶段性总结——APM,ThreadPool,Task,TaskScheduler ,CancellationTokenSource

不管我们使用thread,threadPool,task,还是APM异步,本质都是在使用多线程。对于新手来说,不太敢用多线程的原因,就我个人的体验来说,就是对多线程的异常捕获方式或时机缺乏了解,而一旦出现异常没有捕获,将会带来难以发现的bug,进而造成系统崩溃。而多线程本身也不是一朝一夕就能学好的,必须不断的去学习总结,所以我个人认为你要用一种线程模型,首先要对它有足够的了解,特别是对异常的捕获。如果你没有完全的把握,最好在实际开发中谨慎的用多线程。

1,APM异步编程模型。

采用BeginXXX和EndXXX方法。关于异常的捕捉,对于刚调用BeginXXX抛出的异常,异步操作可能还没有进入队列。这种异常一般可以忽略。对于进入异步操作时发生的异常,会将错误码放入IAsyncResult对象中,在我们调用EndXXX方法时,会将这个错误码转换成一个恰当的Exception再次抛出。所以对于APM编程模型来说,我们只用对EndXXX方法进行异常捕捉。伪代码:

Try
 {
   Result = someObj.EndXXX(IAsyncResult);
}
Catch(xxxException e)
{
 //异常处理
}

注意事项:

1) 对于EndXXX方法的调用是必须的,否则可能会造成资源的泄漏,即使你可能不关心异步调用的返回结果,也要记住调用这个方法。

2) 只能调用一次EndXXX方法。

3) 调用EndXXX方法总是使用和BeginXXX时相同的对象。这里辨别的是引用,引用不同就被视为不同的对象。对于Delegate要补充一点,即使是相同签名的委托,它们被编译器编译成具体的类,这些类的类名是不一样的。

4) 不能取消异步I/O限制的异步操作。不要迷信这句话,他说的是I/O操作,是指的一个请求动作,如果我们的是多次请求,比如异步分块上传文件,是可以做取消功能的。

5) FCL中有许多的I/O操作类都实现了APM。如派生自System.IO.Stream的类,Socket,Dns,WebRequest,还有SqlCommand等等。它们都提供了BeginXXX和EndXXX方法。

6) 可以用APM来执行任何方法,我们只需要定义一个与方法签名一致的delegate,delegate编译后会生成一个BeginInvoke和EndInvoke方法来支持APM操作。

2,Thread & ThreadPool

Thread和ThreadPool发起异步的缺点:

1)没有内建的机制知道任务何时完成。

2)没法得到任务的返回值。

Thread的开销太大,尽量用ThreadPool,除非你要显示指定你的thread为前台线程或要对线程设置优先级,否则就不要用thread。

注意:线程池是由所有的AppDomain共享的。一个CLR维持一个线程池。

3,Task

Task的引入,解决了上面的两个问题。

1)Task可通过Wait()方法来等待任务的完成。这个方法是阻塞的。

2)通过Task.Result可以得到返回结果。在Result内部调用了Wait方法,所以查询这个属性是阻塞的。

3)对于任务函数的未处理异常,会被包装成AggregateException异常抛出。可捕捉Wait()方法和Result属性。通过AggregateException的InnerExceptions可以进一步查询具体的异常。

4)Task的静态方法WaitAny和WaitAll可以等待多个任务返回。同样可以捕捉这两个方法的异常。

5)对于没有调用Wait,Result,Exception来查询未处理异常的情况,例如:只调用了Task.Start方法。Task对象被回收时,Finalize方法会再次抛出这个异常终止进程。可以向TaskScheduler.UnobservedTaskException事件注册一个方法,来处理这类异常。通过UnobservedTaskExceptionEventArgs的SetObserved方法,可以忽略掉这个异常,使进程不会终止。

6)构造Task时,可以传递CancellationToken对象,以支持取消。如果是任务函数,通过调用CancellationToken.ThrowIfCancellationRequested 抛出的异常,类型是OperationCanceledException。如果任务函数没有传递CancellationToken对象,那么抛出的异常是TaskCanceledException,相当于任务级别的取消。

7) Task的ContinueWith方法可以在第一个任务完成时开启第二个任务。这个功能很强大,ContinueWith方法并不阻塞调用线程,它是异步的。我们可以在ContinueWith中写一个事件回调方法,它可以起到事件完成通知的作用。但它只能收到任务完成的通知,要实现任务进度的更新通知,到目前为止,task依然做不到。

            Task<int> t = new Task<int>(() => Sum(100));

            t.Start();
            t.ContinueWith(task => Console.WriteLine("result:" + task.Result), TaskContinuationOptions.OnlyOnRanToCompletion);
            t.ContinueWith(task => Console.WriteLine("canceled"), TaskContinuationOptions.OnlyOnCanceled);
            t.ContinueWith(task => Console.WriteLine("failed"), TaskContinuationOptions.OnlyOnFaulted);

对于上面的这一窜代码,如果有未处理异常,同样会造成进程终止。你同样可以用TaskScheduler.UnobservedTaskException事件注册一个方法来处理。

8)Task可以指定子任务,子任务没有完成,父任务的ContinueTask也不会执行。关于异常和上面的处理方法一样。因为这个也是不阻塞的,未处理异常暂时也只能在TaskScheduler.UnobservedTaskException里处理。

           Task<Int32[]> parent = new Task<int[]>(() =>
                {
                    Int32[] result = new Int32[3];
                    new Task<Int32>(() => result[0] = Sum(100), TaskCreationOptions.AttachedToParent).Start();
                    new Task<Int32>(() => result[1] = Sum(200), TaskCreationOptions.AttachedToParent).Start();
                    new Task<Int32>(() => result[2] = Sum(300), TaskCreationOptions.AttachedToParent).Start();

                    return result;
                });

            parent.ContinueWith(parentTask => Array.ForEach(parentTask.Result, num => Console.WriteLine(num)));

            parent.Start();

9)TaskFactroy可以简化一组相似Task的创建工作。

Task parent = new Task(() =>
                {
                    CancellationTokenSource cts = new CancellationTokenSource();

                    TaskFactory<Int32> tf = new TaskFactory<Int32>(cts.Token, TaskCreationOptions.AttachedToParent,
                        TaskContinuationOptions.ExecuteSynchronously, TaskScheduler.Default);

                    //create three child task
                    var childTasks = new[]{
                    tf.StartNew(()=>Sum(cts.Token,100)),
                    tf.StartNew(()=>Sum(cts.Token,200)),
                    tf.StartNew(()=>Sum(cts.Token,Int32.MaxValue))
                    };

                    //when one failed,cancel the other
                    for (int i = 0; i < childTasks.Length; i++)
                    {
                        childTasks[i].ContinueWith(task => cts.Cancel(), TaskContinuationOptions.OnlyOnFaulted);
                    }

                    //display the maxvalue
                    tf.ContinueWhenAll(
                        childTasks, completeTasks => completeTasks.Where(
                            task => !task.IsCanceled && !task.IsFaulted).Max(t => t.Result),
                            CancellationToken.None).ContinueWith(task => Console.WriteLine("the max is:" + task.Result));

                });

            //show exception
            parent.ContinueWith(p =>
            {
                StringBuilder sb = new StringBuilder();
                sb.AppendLine("error occours:");
                foreach (var e in p.Exception.Flatten().InnerExceptions)
                {
                    sb.AppendLine(e.Message);
                }
                Console.WriteLine(sb.ToString());
            }, TaskContinuationOptions.OnlyOnFaulted);

            parent.Start();

4,对于协作取消要用CancellationTokenSource类。

1)CancellationTokenSource.Token方法返回CancellationToken,可以将CancellationToken传入我们的工作方法,并查询CancellationToken.IsCancellationRequested属性来获得操作是否已取消。取消的情况下,可以结束工作方法。

2)一般在主线程调用取消方法。CancellationToeknSource.Cancel。

3)取消时可以加入回调方法,通过CancellationToken.Register方法注册。对于回调方法抛出的异常,可以捕捉Cancel方法,异常会被包装到AggregateException异常中,查询InnerExceptions可的异常的详细信息。

4)CancellationTokenSource的静态方法CreateLinkedTokenSource可以创建一个关联的CreateLinkedTokenSource对象。任意其中的一个CreateLinkedTokenSource被取消,这个关联的CreateLinkedTokenSource就会被取消。

5,任务调度器。

分为线程池任务调度器(thread pool task scheduler)和同步上下文任务调度器(synchroliazation context task scheduler)。其中同步上下文任务调度器能将所有的任务调度给UI线程,这对于更新界面的异步操作相当有用!默认的调度器是线程池任务调度器。

非UI线程更新UI界面会报错,可以用下面的方法,指定同步上下文任务调度器:

        TaskScheduler syncSch = TaskScheduler.FromCurrentSynchronizationContext();

            Task<int> t = new Task<int>(() => Sum(100));

            //update UI with Synchronizationcontext
            t.ContinueWith(task => Text = task.Result.ToString(), syncSch);

            t.Start();

6,非UI线程更新UI界面的方式总结

详见我的另一篇文章:

http://www.cnblogs.com/xiashengwang/archive/2012/08/18/2645541.html

7,Parallel

这个类提供了For,Foreach,Invoke静态方法。它内部封装了Task类。主要用于并行计算。

        private void ParallelTest2()
        {
            for (int i = 1; i < 5; i++)
            {
                Console.WriteLine(DoWork(i));
            }
            //和上面的代码等价,但是是多线程并行执行的,注意这里的结束index不包含5
            var plr = Parallel.For(1, 5, i => Console.WriteLine(DoWork(i)));
        }

        private int DoWork(int num)
        {
            int sum = 0;
            for (int i = 0; i <= num; i++)
            {
                sum += i;
            }
            return sum;
        }

时间: 2024-11-05 16:04:26

线程阶段性总结——APM,ThreadPool,Task,TaskScheduler ,CancellationTokenSource的相关文章

异步和多线程,委托异步调用,Thread,ThreadPool,Task,Parallel,CancellationTokenSource

1 进程-线程-多线程,同步和异步2 异步使用和回调3 异步参数4 异步等待5 异步返回值 5 多线程的特点:不卡主线程.速度快.无序性7 thread:线程等待,回调,前台线程/后台线程, 8 threadpool:线程池使用,设置线程池,ManualResetEvent9 Task初步接触 10 task:waitall waitany continueWhenAny continueWhenAll  11并行运算Parallel 12 异常处理.线程取消.多线程的临时变量和lock13 A

线程(Thread,ThreadPool)、Task、Parallel

线程(Thread.ThreadPool) 线程的定义我想大家都有所了解,这里我就不再复述了.我这里主要介绍.NET Framework中的线程(Thread.ThreadPool). .NET Framework中的线程分为两类:1.前台线程:2.后台线程. 1.前台线程 class Program { static void Main(string[] args) { Console.WriteLine("=====Thread====="); TestThread(); Cons

WPF异常捕获三种处理 UI线程, 全局异常,Task异常

原文:WPF异常捕获三种处理 UI线程, 全局异常,Task异常 protected override void OnStartup(StartupEventArgs e){base.OnStartup(e);RegisterEvents();} private void RegisterEvents(){//TaskScheduler.UnobservedTaskException += (sender, args) =>//{// MessageBox.Show(args.Exception

.net 多线程 Thread ThreadPool Task

先准备一个耗时方法 /// <summary>/// 耗时方法/// </summary>/// <param name="name"></param>private void DoSomeThing(string name){                 Console.WriteLine($"开始执行{name}, {Thread.CurrentThread.ManagedThreadId.ToString("

[多线程]thread,threadpool,task及TPL知识点整理

简单理解 Thread:是一个指令序列,个体对象. Threadpool:在使用Thread的过程中,程序员要为每个希望并发的序列new一个线程,很麻烦,因此希望有一个统一管理线程的方法,程序员就不需要关注线程的申请管理问题,所以就对Thread进行一系列封装,有了ThreadPool.使用Threadpool,把需要并发的序列添加进线程池,线程池根据其线程列表中的线程的空闲情况,动态为并发序列申请线程. Task:再后来,程序员发现在使用Threadpool的过程当中还是存在很多不便,比如:(

线程(Thread、ThreadPool)

多线程的操作,推荐使用线程池线程而非新建线程.因为就算只是单纯的新建一个线程,这个线程什么事情也不做,都大约需要1M的内存空间来存储执行上下文数据结构,并且线程的创建与回收也需要消耗资源,耗费时间.而线程池的优势在于线程池中的线程是根据需要创建与销毁,是最优的存在.但是这也有个问题,那就是线程池线程都是后台线程,主线程执行完毕后,不会等待后台线程而直接结束程序.所以下面就要引出.NET Framework4.0提供的Task,来解决此类问题. Task是.NET Framework4.0提供的新

C# 显式创建线程 or 使用线程池线程--new Thread() or ThreadPool.QueueUserWorkItem()

在C#多线程编程中,关于是使用自己创建的线程(Thread)还是使用线程池(ThreadPool)线程,一直很困惑,知道看了Jeffrey Richter的相关介绍才明白,记录如下: 当满足一下任何条件,就可以显式地创建自己的线程: 1.线程需要以非普通线程优先级运行.所有线程池线程都已普通优先级运行:虽然可以更改线程池线程的优先级,但是不建议那样做.另外,在不同的线程池操作之间,对优先级的更改是无法持续的. 2.需要线程表现为一个前台线程,防止应用程序在线程结束任务钱终止.线程池线程始终是后台

C# Task Cancel,CancellationTokenSource.IsCancellationRequested

public partial class Form1 : Form { CancellationTokenSource cts = new CancellationTokenSource(); public Form1() { InitializeComponent(); } private void StartClick(object sender, EventArgs e) { Task testTask = Task.Run(() => { while (!cts.IsCancellati

C#线程篇---Task(任务)和线程池不得不说的秘密(5)

在上篇最后一个例子之后,我们发现了怎么去使用线程池,调用ThreadPool的QueueUserWorkItem方法来发起一次异步的.计算限制的操作,例子很简单,不是吗? 然而,在今天这篇博客中,我们要知道的是,QueueUserWorkItem这个技术存在许多限制.其中最大的问题是没有一个内建的机制让你知道操作在什么时候完成,也没有一个机制在操作完成是获得一个返回值,这些问题使得我们都不敢启用这个技术. Microsoft为了克服这些限制(同时解决其他一些问题),引入了任务(tasks)的概念