Muduo网络库源码分析(六)TcpConnection 的生存期管理

TcpConnection是使用shared_ptr来管理的类,因为它的生命周期模糊。TcpConnection表示已经建立或正在建立的连接,建立连接后,用户只需要在上层类如TcpServer中设置连接到来和消息到来的处理函数,继而回调TcpConnection中的 setConnectionCallback和setMessageCallback函数,实现对事件的处理。用户需要关心的事件是有限的,其他都由网络库负责。

TcpConnection中封装了InputBuffer和OutputBuffer,用来表示应用层的缓冲区。在发送数据时,如果不能一次将Buffer中的数据发送完毕,它还会继续关注Channel中的可写事件,当sockfd可写时,会再次发送。

前面提到TcpConnection的生存期模糊,主要是因为我们不能在TcpServer中直接erase掉TcpConnection对象,因为此时有可能Channel中的handleEvent还在执行,如果析构TcpConnection对象,那么他的成员channel_也会被析构,会导致core
dump。也就是说我们需要TcpConnection 对象生存期要长于handleEvent() 函数,直到执行完connectDestroyed() 后才会析构。

断开连接:

TcpConnection的断开是采用被动方式,即对方先关闭连接,本地read(2)返回0后,调用顺序如下:

handleClose()->TcpServer::removeConnection->TcpConnection::connectDestroyed()。

具体我们查看下面的连接关闭时序图:

当连接到来,创建一个TcpConnection对象,立刻用shared_ptr来管理,引用计数为1,在Channel中维护一个weak_ptr(tie_),将这个shared_ptr对象赋值给_tie,引用计数仍然为1。当连接关闭时,在handleEvent中,将tie_提升,得到一个shard_ptr对象,引用计数就变成了2。当shared_ptr的计数不为0时,TcpConnection不会被销毁。

TcpConnection.h

class TcpConnection : boost::noncopyable,
                      public boost::enable_shared_from_this<TcpConnection>
{
 public:
  /// Constructs a TcpConnection with a connected sockfd
  ///
  /// User should not create this object.
  TcpConnection(EventLoop* loop,
                const string& name,
                int sockfd,
                const InetAddress& localAddr,
                const InetAddress& peerAddr);
  ~TcpConnection();

  EventLoop* getLoop() const { return loop_; }
  const string& name() const { return name_; }
  const InetAddress& localAddress() { return localAddr_; }
  const InetAddress& peerAddress() { return peerAddr_; }
  bool connected() const { return state_ == kConnected; }

  void setConnectionCallback(const ConnectionCallback& cb)
  { connectionCallback_ = cb; }

  void setMessageCallback(const MessageCallback& cb)
  { messageCallback_ = cb; }

  /// Internal use only.
  void setCloseCallback(const CloseCallback& cb)
  { closeCallback_ = cb; }

  // called when TcpServer accepts a new connection
  void connectEstablished();   // should be called only once
  // called when TcpServer has removed me from its map
  void connectDestroyed();  // should be called only once

 private:
  enum StateE { kDisconnected, kConnecting, kConnected, kDisconnecting };
  void handleRead(Timestamp receiveTime);
  void handleClose();
  void handleError();
  void setState(StateE s) { state_ = s; }

  EventLoop* loop_;			// 所属EventLoop
  string name_;				// 连接名
  StateE state_;  // FIXME: use atomic variable
  // we don't expose those classes to client.
  boost::scoped_ptr<Socket> socket_;
  boost::scoped_ptr<Channel> channel_;
  InetAddress localAddr_;
  InetAddress peerAddr_;
  ConnectionCallback connectionCallback_;
  MessageCallback messageCallback_;
  CloseCallback closeCallback_;
};

typedef boost::shared_ptr<TcpConnection> TcpConnectionPtr;

}

TcpConnection.cc

TcpConnection::TcpConnection(EventLoop* loop,
                             const string& nameArg,
                             int sockfd,
                             const InetAddress& localAddr,
                             const InetAddress& peerAddr)
  : loop_(CHECK_NOTNULL(loop)),
    name_(nameArg),
    state_(kConnecting),
    socket_(new Socket(sockfd)),
    channel_(new Channel(loop, sockfd)),
    localAddr_(localAddr),
    peerAddr_(peerAddr)/*,
    highWaterMark_(64*1024*1024)*/
{
  // 通道可读事件到来的时候,回调TcpConnection::handleRead,_1是事件发生时间
  channel_->setReadCallback(
      boost::bind(&TcpConnection::handleRead, this, _1));
  // 连接关闭,回调TcpConnection::handleClose
  channel_->setCloseCallback(
      boost::bind(&TcpConnection::handleClose, this));
  // 发生错误,回调TcpConnection::handleError
  channel_->setErrorCallback(
      boost::bind(&TcpConnection::handleError, this));
  LOG_DEBUG << "TcpConnection::ctor[" <<  name_ << "] at " << this
            << " fd=" << sockfd;
  socket_->setKeepAlive(true);
}

TcpConnection::~TcpConnection()
{
  LOG_DEBUG << "TcpConnection::dtor[" <<  name_ << "] at " << this
            << " fd=" << channel_->fd();
}

void TcpConnection::connectEstablished()
{
  loop_->assertInLoopThread();
  assert(state_ == kConnecting);
  setState(kConnected);
  LOG_TRACE << "[3] usecount=" << shared_from_this().use_count();
  channel_->tie(shared_from_this());
  channel_->enableReading();	// TcpConnection所对应的通道加入到Poller关注

  connectionCallback_(shared_from_this());
  LOG_TRACE << "[4] usecount=" << shared_from_this().use_count();
}

void TcpConnection::connectDestroyed()
{
  loop_->assertInLoopThread();
  if (state_ == kConnected)
  {
    setState(kDisconnected);
    channel_->disableAll();

    connectionCallback_(shared_from_this());
  }
  channel_->remove();
}

void TcpConnection::handleRead(Timestamp receiveTime)
{
  /*
  loop_->assertInLoopThread();
  int savedErrno = 0;
  ssize_t n = inputBuffer_.readFd(channel_->fd(), &savedErrno);
  if (n > 0)
  {
    messageCallback_(shared_from_this(), &inputBuffer_, receiveTime);
  }
  else if (n == 0)
  {
    handleClose();
  }
  else
  {
    errno = savedErrno;
    LOG_SYSERR << "TcpConnection::handleRead";
    handleError();
  }
  */
  loop_->assertInLoopThread();
  int savedErrno = 0;
  char buf[65536];
  ssize_t n = ::read(channel_->fd(), buf, sizeof buf);
  if (n > 0)
  {
    messageCallback_(shared_from_this(), buf, n);
  }
  else if (n == 0)
  {
    handleClose();
  }
  else
  {
    errno = savedErrno;
    LOG_SYSERR << "TcpConnection::handleRead";
    handleError();
  }

Channel中对tie_的处理:

void Channel::handleEvent(Timestamp receiveTime)
{
  boost::shared_ptr<void> guard;
  if (tied_)
  {
    guard = tie_.lock();
    if (guard)
    {
      LOG_TRACE << "[6] usecount=" << guard.use_count();
      handleEventWithGuard(receiveTime);
	  LOG_TRACE << "[12] usecount=" << guard.use_count();
    }
  }
  else
  {
    handleEventWithGuard(receiveTime);
  }
}

参考:

《linux多线程服务端编程》

《muduo使用手册》

时间: 2024-08-02 08:58:44

Muduo网络库源码分析(六)TcpConnection 的生存期管理的相关文章

Muduo网络库源码分析(一) EventLoop事件循环(Poller和Channel)

从这一篇博文起,我们开始剖析Muduo网络库的源码,主要结合<Linux多线程服务端编程>和网上的一些学习资料! (一)TCP网络编程的本质:三个半事件 1. 连接的建立,包括服务端接受(accept) 新连接和客户端成功发起(connect) 连接.TCP 连接一旦建立,客户端和服务端是平等的,可以各自收发数据. 2. 连接的断开,包括主动断开(close 或shutdown) 和被动断开(read(2) 返回0). 3. 消息到达,文件描述符可读.这是最为重要的一个事件,对它的处理方式决定

Muduo网络库源码分析(五)Acceptor和TcpServer类

首先,我们先提一下对Socket的封装(不复杂,所以简单说一下). Endian.h : 封装了字节序转换函数(全局函数,位于muduo::net::sockets名称空间中). SocketsOps.h/ SocketsOps.cc :封装了socket相关系统调用. Socket.h/Socket.cc(Socket类): 用RAII方法封装socket file descriptor. InetAddress.h/InetAddress.cc(InetAddress类):网际地址socka

Muduo网络库源码分析(四)EventLoopThread和EventLoopThreadPool的封装

muduo的并发模型为one loop per thread+ threadpool.为了方便使用,muduo封装了EventLoop和Thread为EventLoopThread,为了方便使用线程池,又把EventLoopThread封装为EventLoopThreadPool.所以这篇博文并没有涉及到新鲜的技术,但是也有一些封装和逻辑方面的注意点需要我们去分析和理解. EventLoopThread 任何一个线程,只要创建并运行了EventLoop,就是一个IO线程. EventLoopTh

Nouveau源码分析(六):NVIDIA设备初始化之nouveau_drm_load (3)

Nouveau源码分析(六) 上一篇中我们暂时忽略了两个函数,第一个是用于创建nvif_device对应的nouveau_object的ctor函数: // /drivers/gpu/drm/nouveau/core/engine/device/base.c 488 static struct nouveau_ofuncs 489 nouveau_devobj_ofuncs = { 490 .ctor = nouveau_devobj_ctor, 491 .dtor = nouveau_devo

android 网络框架 源码分析

android 网络框架 源码分析 导语: 最近想开发一个协议分析工具,来监控android app 所有的网络操作行为, 由于android 开发分为Java层,和Native层, 对于Native层我们只要对linux下所有网络I/O接口进行拦截即可,对于java 层,笔者对android 网络框架不是很了解,所以这个工具开发之前,笔者需要对android 的网络框架进行一个简单的分析. 分析结论: 1. android 的网络框架都是基于Socket类实现的 2. java 层Socket

Android网络框架源码分析一---Volley

转载自 http://www.jianshu.com/p/9e17727f31a1?utm_campaign=maleskine&utm_content=note&utm_medium=mobile_author_hots&utm_source=recommendation 公司最近新起了一个项目,对喜欢尝鲜的我们来说,好处就是我们可以在真实的项目中想尝试一些新技术,验证想法.新项目对网络框架的选取,我们存在三种方案: 1.和我们之前的项目一样,使用Loader + HttpCli

handy网络库源码阅读

简洁易用的C++11网络库,From:https://github.com/yedf/handy 在整理过去的资料过程中,发现过去有关注过这一个网络库,简单看了一下属于轻量级的实现,因此本文将对该库进行简单的学习之旅,目标是对网络基础知识进一步巩固. 编译和运行 库目前实现了linux和mac环境,需要支持C++11因此gcc的版本要大于4.8,在我的虚拟机ubuntu12.04是要升级gcc版本,然后使用云centos 7,之前安装的cmake版本是2.8.12,与要求的版本大于3.2不匹配,

libevent高性能网络库源码分析——事件处理框架(四)

event_base结构 event_base的初始化 接口函数 libevent中基于Reactor模式的事件处理框架对应event_base,在event在完成创建后,需要向event_base注册事件,监控事件的当前状态,当事件状态为激活状(EV_ACTIVE)时,调用回调函数执行.本文主要从以下几方面进行分析:event_base的结构,event_base的创建,事件的注册.事件分发.事件注销 event_base结构 struct event_base { //指定某个eventop

Vue 2.0 深入源码分析(六) 基础篇 computed 属性详解

用法 模板内的表达式非常便利,但是设计它们的初衷是用于简单运算的.在模板中放入太多的逻辑会让模板过重且难以维护,比如: <div id="example">{{ message.split('').reverse().join('') }}</div> <script> var app = new Vue({ el:'#example', data:{message:'hello world'} }) </script> 这样模板不再是简