- 题目大意
求有向图中经过某一点k的最大环(数据规模不支持floyd)。
- 题解
以k为起点在正向图中spfa求单源最短路,再在反向图中spfa求单源最短路。枚举除k外的每一个点i,如果有一个同时包含i与k的环,ans=max{ans,dist[i]+invdist[i]}。
- Code
#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
using namespace std;
const int maxn = 1010, maxm = 200010, nil = 0, oo = 1061109567;
int n, m, k;
int pnt[maxn], nxt[maxm], u[maxm], v[maxm], w[maxm], e;
int d[maxn], invd[maxn];
bool vis[maxn], other[maxm];
void addedge(int x, int y, int z)
{
u[++e] = x; v[e] = y; w[e] = z;
nxt[e] = pnt[x]; pnt[x] = e; other[e] = false;
u[++e] = y; v[e] = x; w[e] = z;
nxt[e] = pnt[y]; pnt[y] = e; other[e] = true;
}
void init()
{
int x, y, z;
scanf("%d%d%d", &n, &m, &k);
for(int i = 1; i <= m; ++i)
{
scanf("%d%d%d", &x, &y, &z);
addedge(x, y, z);
}
}
void work()
{
queue <int> q;
//以下为反向spfa
memset(invd, 0x3f, sizeof(invd));
memset(vis, 0, sizeof(vis));
invd[k] = 0; vis[k] = true;
q.push(k);
while(!q.empty())
{
int tmp = q.front();
q.pop();
vis[tmp] = false;
for(int j = pnt[tmp]; j != nil; j = nxt[j])
{
if(other[j] && invd[v[j]] > invd[tmp] + w[j])
{
invd[v[j]] = invd[tmp] + w[j];
vis[v[j]] = true;
q.push(v[j]);
}
}
}
//以下为正向spfa
memset(d, 0x3f, sizeof(d));
memset(vis, 0, sizeof(vis));
d[k] = 0; vis[k] = true;
q.push(k);
while(!q.empty())
{
int tmp = q.front();
q.pop();
vis[tmp] = false;
for(int j = pnt[tmp]; j != nil; j = nxt[j])
{
if((!other[j]) && d[v[j]] > d[tmp] + w[j])
{
d[v[j]] = d[tmp] + w[j];
vis[v[j]] = true;
q.push(v[j]);
}
}
}
int ans = 0;
for(int i = 1; i <= n; ++i)
{
if(d[i] != oo && invd[i] != oo)
{
ans = max(ans, d[i] + invd[i]);
}
}
printf("%d\n", ans);
}
int main()
{
init();
work();
return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。
时间: 2024-10-08 23:21:01