java虚拟机学习-JVM调优总结(5)

数据类型

Java虚拟机中,数据类型可以分为两类:基本类型引用类型。基本类型的变量保存原始值,即:他代表的值就是数值本身;而引用类型的变量保存引用值。“引用值”代表了某个对象的引用,而不是对象本身,对象本身存放在这个引用值所表示的地址的位置。

基本类型包括:byte,short,int,long,char,float,double,Boolean,returnAddress

引用类型包括:类类型接口类型数组

堆与栈

堆和栈是程序运行的关键,很有必要把他们的关系说清楚。

1、栈是运行时的单位,而堆是存储的单位

栈解决程序的运行问题,即程序如何执行,或者说如何处理数据;堆解决的是数据存储的问题,即数据怎么放、放在哪儿。

在Java中一个线程就会相应有一个线程栈与之对应,这点很容易理解,因为不同的线程执行逻辑有所不同,因此需要一个独立的线程栈。而堆则是所有线程共享的。栈因为是运行单位,因此里面存储的信息都是跟当前线程(或程序)相关信息的。包括局部变量、程序运行状态、方法返回值等等;而堆只负责存储对象信息。

2.为什么要把堆和栈区分出来呢?栈中不是也可以存储数据吗

第一,从软件设计的角度看,栈代表了处理逻辑,而堆代表了数据。这样分开,使得处理逻辑更为清晰。分而治之的思想。这种隔离、模块化的思想在软件设计的方方面面都有体现。

第二,堆与栈的分离,使得堆中的内容可以被多个栈共享(也可以理解为多个线程访问同一个对象)。这种共享的收益是很多的。一方面这种共享提供了一种有效的数据交互方式(如:共享内存),另一方面,堆中的共享常量和缓存可以被所有栈访问,节省了空间。

第三,栈因为运行时的需要,比如保存系统运行的上下文,需要进行地址段的划分。由于栈只能向上增长,因此就会限制住栈存储内容的能力。而堆不同,堆中的对象是可以根据需要动态增长的,因此栈和堆的拆分,使得动态增长成为可能,相应栈中只需记录堆中的一个地址即可。

第四,面向对象就是堆和栈的完美结合。其实,面向对象方式的程序与以前结构化的程序在执行上没有任何区别。但是,面向对象的引入,使得对待问题的思考方式发生了改变,而更接近于自然方式的思考。当我们把对象拆开,你会发现,对象的属性其实就是数据,存放在堆中;而对象的行为(方法),就是运行逻辑,放在栈中。我们在编写对象的时候,其实即编写了数据结构,也编写的处理数据的逻辑。不得不承认,面向对象的设计,确实很美。

3、 Java中,Main函数就是栈的起始点,也是程序的起始点

程序要运行总是有一个起点的。同C语言一样,java中的Main就是那个起点。无论什么java程序,找到main就找到了程序执行的入口:)

4、堆中存什么?栈中存什么

堆中存的是对象。栈中存的是基本数据类型和堆中对象的引用。一个对象的大小是不可估计的,或者说是可以动态变化的,但是在栈中,一个对象只对应了一个4btye的引用(堆栈分离的好处:))。

为什么不把基本类型放堆中呢?因为其占用的空间一般是1~8个字节——需要空间比较少,而且因为是基本类型,所以不会出现动态增长的情况——长度固定,因此栈中存储就够了,如果把他存在堆中是没有什么意义的(还会浪费空间,后面说明)。可以这么说,基本类型和对象的引用都是存放在栈中,而且都是几个字节的一个数,因此在程序运行时,他们的处理方式是统一的。但是基本类型、对象引用和对象本身就有所区别了,因为一个是栈中的数据一个是堆中的数据。最常见的一个问题就是,Java中参数传递时的问题。

5、Java中的参数传递时传值呢?还是传引用

要说明这个问题,先要明确两点:

1. 不要试图与C进行类比,Java中没有指针的概念

2. 程序运行永远都是在栈中进行的,因而参数传递时,只存在传递基本类型和对象引用的问题。不会直接传对象本身。

明确以上两点后。Java在方法调用传递参数时,因为没有指针,所以它都是进行传值调用(这点可以参考C的传值调用)。因此,很多书里面都说Java是进行传值调用,这点没有问题,而且也简化的C中复杂性。

但是传引用的错觉是如何造成的呢?在运行栈中,基本类型和引用的处理是一样的,都是传值,所以,如果是传引用的方法调用,也同时可以理解为“传引用值”的传值调用,即引用的处理跟基本类型是完全一样的。但是当进入被调用方法时,被传递的这个引用的值,被程序解释(或者查找)到堆中的对象,这个时候才对应到真正的对象。如果此时进行修改,修改的是引用对应的对象,而不是引用本身,即:修改的是堆中的数据。所以这个修改是可以保持的了。

对象,从某种意义上说,是由基本类型组成的。可以把一个对象看作为一棵树,对象的属性如果还是对象,则还是一颗树(即非叶子节点),基本类型则为树的叶子节点。程序参数传递时,被传递的值本身都是不能进行修改的,但是,如果这个值是一个非叶子节点(即一个对象引用),则可以修改这个节点下面的所有内容。

堆和栈中,栈是程序运行最根本的东西。程序运行可以没有堆,但是不能没有栈。而堆是为栈进行数据存储服务,说白了堆就是一块共享的内存。不过,正是因为堆和栈的分离的思想,才使得Java的垃圾回收成为可能。

Java中,栈的大小通过-Xss来设置,当栈中存储数据比较多时,需要适当调大这个值,否则会出现java.lang.StackOverflowError异常。常见的出现这个异常的是无法返回的递归,因为此时栈中保存的信息都是方法返回的记录点。

时间: 2024-11-05 13:46:53

java虚拟机学习-JVM调优总结(5)的相关文章

java虚拟机学习-JVM调优总结-调优方法(12)

JVM调优工具 Jconsole,jProfile,VisualVM Jconsole : jdk自带,功能简单,但是可以在系统有一定负荷的情况下使用.对垃圾回收算法有很详细的跟踪.详细说明参考这里 JProfiler:商业软件,需要付费.功能强大.详细说明参考这里 VisualVM:JDK自带,功能强大,与JProfiler类似.推荐. 如何调优 观察内存释放情况.集合类检查.对象树 上面这些调优工具都提供了强大的功能,但是总的来说一般分为以下几类功能 堆信息查看 可查看堆空间大小分配(年轻代

java虚拟机学习-JVM调优总结-分代垃圾回收详述(9)

为什么要分代 分代的垃圾回收策略,是基于这样一个事实:不同的对象的生命周期是不一样的.因此,不同生命周期的对象可以采取不同的收集方式,以便提高回收效率. 在Java程序运行的过程中,会产生大量的对象,其中有些对象是与业务信息相关,比如Http请求中的Session对象.线程.Socket连接,这类对象跟业务直接挂钩,因此生命周期比较长.但是还有一些对象,主要是程序运行过程中生成的临时变量,这些对象生命周期会比较短,比如:String对象,由于其不变类的特性,系统会产生大量的这些对象,有些对象甚至

java虚拟机学习-JVM调优总结-新一代的垃圾回收算法(11)

垃圾回收的瓶颈 传统分代垃圾回收方式,已经在一定程度上把垃圾回收给应用带来的负担降到了最小,把应用的吞吐量推到了一个极限.但是他无法解决的一个问题,就是Full GC所带来的应用暂停.在一些对实时性要求很高的应用场景下,GC暂停所带来的请求堆积和请求失败是无法接受的.这类应用可能要求请求的返回时间在几百甚至几十毫秒以内,如果分代垃圾回收方式要达到这个指标,只能把最大堆的设置限制在一个相对较小范围内,但是这样有限制了应用本身的处理能力,同样也是不可接收的. 分代垃圾回收方式确实也考虑了实时性要求而

java虚拟机学习-JVM调优总结(6)

1.Java对象的大小 基本数据的类型的大小是固定的,这里就不多说了.对于非基本类型的Java对象,其大小就值得商榷. 在Java中,一个空Object对象的大小是8byte,这个大小只是保存堆中一个没有任何属性的对象的大小.看下面语句: Object ob = new Object(); 这样在程序中完成了一个Java对象的生命,但是它所占的空间为:4byte+8byte.4byte是上面部分所说的Java栈中保存引用的所需要的空间.而那8byte则是Java堆中对象的信息.因为所有的Java

java虚拟机学习-JVM调优总结-垃圾回收面临的问题(8)

如何区分垃圾 上面说到的“引用计数”法,通过统计控制生成对象和删除对象时的引用数来判断.垃圾回收程序收集计数为0的对象即可.但是这种方法无法解决循环引用.所以,后来实现的垃圾判断算法中,都是从程序运行的根节点出发,遍历整个对象引用,查找存活的对象.那么在这种方式的实现中,垃圾回收从哪儿开始的呢?即,从哪儿开始查找哪些对象是正在被当前系统使用的.上面分析的堆和栈的区别,其中栈是真正进行程序执行地方,所以要获取哪些对象正在被使用,则需要从Java栈开始.同时,一个栈是与一个线程对应的,因此,如果有多

java中高级面试题, 虚拟机,JVM调优,垃圾回收,多线程,内存模型

面试问题: 一.Java基础方面: 1.Java面相对象的思想的理解(主要是多态): http://blog.csdn.net/zhaojw_420/article/details/70477636 2.集合:ArrayList,LinkedList,HashMap,LinkedHashMap,ConcurrentHashMap,HashTable,HashSet的底层源码实现原理 3.Java虚拟机 (1)组成以及各部分作用: http://blog.csdn.net/zhaojw_420/a

java虚拟机学习-JVM内存管理:深入Java内存区域与OOM(3)

概述 Java与C++之间有一堵由内存动态分配和垃圾收集技术所围成的高墙,墙外面的人想进去,墙里面的人却想出来. 对于从事C.C++程序开发的开发人员来说,在内存管理领域,他们即是拥有最高权力的皇帝又是执行最基础工作的劳动人民——拥有每一个对象的“所有权”,又担负着每一个对象生命开始到终结的维护责任. 对于Java程序员来说,不需要在为每一个new操作去写配对的delete/free,不容易出现内容泄漏和内存溢出错误,看起来由JVM管理内存一切都很美好.不过,也正是因为Java程序员把内存控制的

29、Java虚拟机垃圾回收调优

一.背景 如果在持久化RDD的时候,持久化了大量的数据,那么Java虚拟机的垃圾回收就可能成为一个性能瓶颈.因为Java虚拟机会定期进行垃圾回收,此时就会追踪所有的java对象, 并且在垃圾回收时,找到那些已经不在使用的对象,然后清理旧的对象,来给新的对象腾出内存空间. 垃圾回收的性能开销,是跟内存中的对象的数量,成正比的.所以,对于垃圾回收的性能问题,首先要做的就是,使用更高效的数据结构,比如array和string:其次就是在持久化rdd时, 使用序列化的持久化级别,而且用Kryo序列化类库

java虚拟机学习-JVM内存管理:深入垃圾收集器与内存分配策略(4)

Java与C++之间有一堵由内存动态分配和垃圾收集技术所围成的高墙,墙外面的人想进去,墙里面的人却想出来. 概述: 说起垃圾收集(Garbage Collection,下文简称GC),大部分人都把这项技术当做Java语言的伴生产物.事实上GC的历史远远比Java来得久远,在1960年诞生于MIT的Lisp是第一门真正使用内存动态分配和垃圾收集技术的语言.当Lisp还在胚胎时期,人们就在思考GC需要完成的3件事情:哪些内存需要回收?什么时候回收?怎么样回收? 经过半个世纪的发展,目前的内存分配策略