题目大意:有一个间谍要将一些机密文件送到目的地
现在给出间谍的初始位置和要去的目的地,要求你在间谍的必经路上将其拦获且费用最小
解题思路:最小割最大流的应用,具体可以看网络流–最小割最大流
建图的话
超级源点–起始城市,容量为INF
城市拆成两点(u, v),容量为监视该城市的代价
能连通的城市连接,容量为INF
目的地和超级汇点相连,容量为INF
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <queue>
using namespace std;
#define N 1010
#define INF 0x3f3f3f3f
struct Edge {
int from, to, cap, flow;
Edge() {}
Edge(int from, int to, int cap, int flow): from(from), to(to), cap(cap), flow(flow) {}
};
struct ISAP {
int p[N], num[N], cur[N], d[N];
int t, s, n, m;
bool vis[N];
vector<int> G[N];
vector<Edge> edges;
void init(int n) {
this->n = n;
for (int i = 0; i <= n; i++) {
G[i].clear();
d[i] = INF;
}
edges.clear();
}
void AddEdge(int from, int to, int cap) {
edges.push_back(Edge(from, to, cap, 0));
edges.push_back(Edge(to, from, 0, 0));
m = edges.size();
G[from].push_back(m - 2);
G[to].push_back(m - 1);
}
bool BFS() {
memset(vis, 0, sizeof(vis));
queue<int> Q;
d[t] = 0;
vis[t] = 1;
Q.push(t);
while (!Q.empty()) {
int u = Q.front();
Q.pop();
for (int i = 0; i < G[u].size(); i++) {
Edge &e = edges[G[u][i] ^ 1];
if (!vis[e.from] && e.cap > e.flow) {
vis[e.from] = true;
d[e.from] = d[u] + 1;
Q.push(e.from);
}
}
}
return vis[s];
}
int Augment() {
int u = t, flow = INF;
while (u != s) {
Edge &e = edges[p[u]];
flow = min(flow, e.cap - e.flow);
u = edges[p[u]].from;
}
u = t;
while (u != s) {
edges[p[u]].flow += flow;
edges[p[u] ^ 1].flow -= flow;
u = edges[p[u]].from;
}
return flow;
}
int Maxflow(int s, int t) {
this->s = s; this->t = t;
int flow = 0;
BFS();
if (d[s] > n)
return 0;
memset(num, 0, sizeof(num));
memset(cur, 0, sizeof(cur));
for (int i = 0; i < n; i++)
if (d[i] < INF)
num[d[i]]++;
int u = s;
while (d[s] <= n) {
if (u == t) {
flow += Augment();
u = s;
}
bool ok = false;
for (int i = cur[u]; i < G[u].size(); i++) {
Edge &e = edges[G[u][i]];
if (e.cap > e.flow && d[u] == d[e.to] + 1) {
ok = true;
p[e.to] = G[u][i];
cur[u] = i;
u = e.to;
break;
}
}
if (!ok) {
int Min = n;
for (int i = 0; i < G[u].size(); i++) {
Edge &e = edges[G[u][i]];
if (e.cap > e.flow)
Min = min(Min, d[e.to]);
}
if (--num[d[u]] == 0)
break;
num[d[u] = Min + 1]++;
cur[u] = 0;
if (u != s)
u = edges[p[u]].from;
}
}
return flow;
}
};
ISAP isap;
int n, m;
void solve() {
int source = 0, sink = 2 * n + 1;
int s, t;
isap.init(sink);
scanf("%d%d", &s, &t);
isap.AddEdge(source, s, INF);
isap.AddEdge(t + n, sink, INF);
int x, y;
for (int i = 1; i <= n; i++) {
scanf("%d", &x);
isap.AddEdge(i, i + n, x);
}
for (int j = 0; j < m; j++) {
scanf("%d%d", &x, &y);
isap.AddEdge(x + n, y, INF);
isap.AddEdge(y + n, x, INF);
}
printf("%d\n", isap.Maxflow(source, sink));
}
int main() {
while (scanf("%d%d", &n, &m) != EOF) {
solve();
}
return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。
时间: 2024-10-14 23:13:46