剧情提要:
[机器小伟]在[工程师阿伟]的陪同下进入了[九转金丹]之第八转的修炼。设想一个场景:
如果允许你带一台不连网的计算机去参加高考,你会放弃选择一个手拿计算器和草稿本吗
?阿伟决定和小伟来尝试一下用计算机算高考题会是怎样的感觉。
正剧开始:
星历2016年05月20日 11:40:58, 银河系厄尔斯星球中华帝国江南行省。
[工程师阿伟]正在和[机器小伟]一起做着2005年的江苏省数学高考题]。
总体来说,这次的难度和上一年持平,都是很厚道的那种,
不过上一年的好多题都像闹着玩似的,这次稍微好点,不过运算量也很小。
然后最大的改变就是打破了持续N年的22题格局,用减少一个主观题为代价,添加了两个填空题。
<span style="font-size:18px;">def tmp1(): A = set([1, 2]); B = set([1,2,3]); C = set([2,3,4]); D = (A.intersection(B)).union(C); print(D); E = (A & B) | C; print(E); >>> {1, 2, 3, 4} {1, 2, 3, 4}</span>
<span style="font-size:18px;">//题2 if (1) { var r = 20; config.setSector(1,1,1,1); config.graphPaper2D(0, 0, r); config.axis2D(0, 0,180); //坐标轴设定 var scaleX = 2*r, scaleY = 2*r; var spaceX = 2, spaceY = 2; var xS = -10, xE = 10; var yS = -20, yE = 20; config.axisSpacing(xS, xE, spaceX, scaleX, 'X'); config.axisSpacing(yS, yE, spaceY, scaleY, 'Y'); var transform = new Transform(); //存放函数图像上的点 var a = [], b = [], c = [], d = []; //需要显示的函数说明 //希腊字母表(存此用于Ctrl C/V //ΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΩ //αβγδεζηθικλμνξοπρστυφχψω var f1 = 'y = 2^[1-x]+3的反函数', f2 = 'y = 2^[1-x]+3', f3 = '', f4 = ''; var y1 = y2 = 0; //(1-(x+2)^2)^0.5 for (var x = xS; x <= xE; x+=0.2) { y1 = Math.pow(2, 1-x)+3; a.push([y1, x]); b.push([x, y1]); } //存放临时数组 var tmp = []; //显示变换 if (a.length > 0) { a = transform.scale(transform.translate(a, 0, 0), scaleX/spaceX, scaleY/spaceY); //函数1 tmp = [].concat(a); shape.pointDraw(tmp, 'red'); tmp = [].concat(a); shape.multiLineDraw(tmp, 'pink'); plot.setFillStyle('red'); plot.fillText(f1, 100, -90, 200); } //显示变换 if (b.length > 0) { b = transform.scale(transform.translate(b, 0, 0), scaleX/spaceX, scaleY/spaceY); //函数1 tmp = [].concat(b); shape.pointDraw(tmp, 'blue'); tmp = [].concat(b); shape.multiLineDraw(tmp, '#2288FF'); plot.setFillStyle('blue'); plot.fillText(f2, 100, -120, 200); } } var f1 = 'y = Math.log(2/(x-3))/Math.log(2)', f2 = 'y = 2^[1-x]+3', f3 = '', f4 = ''; var y1 = y2 = 0; //(1-(x+2)^2)^0.5 for (var x = xS; x <= xE; x+=0.2) { y1 = Math.log(2/(x-3))/Math.log(2) a.push([x, y1]); } </span>
<span style="font-size:18px;">#题4 def tmp4(): panel = Panel(); #正三棱柱ABC-A1B1C1 A, B, C = [0, 0, 0], [2,0,0], [1, 3**0.5, 0]; A1, B1, C1 = [0, 0, 1], [2,0,1], [1, 3**0.5, 1]; #平面ABC的法向量 norm_ABC = panel.normal([A, B, C]); print(norm_ABC); #平面ABC的一般式方程 genre_ABC = panel.genreForm([A, B, C]); print(genre_ABC); #占A到平面A1BC的距离 dis_A_A1BC = panel.pt2panel(A, [A1, B, C]); print(dis_A_A1BC); >>> [0.0, 0, 3.4641016151377544] [0.0, 0, 3.4641016151377544, -0.0] 0.8660254037844386 ### # @usage 平面解析几何里的平面类,包含相关的一组计算方法 # @author mw # @date 2016年05月20日 星期五 09:02:31 # @param # @return # ### #涉及到平面,所有的坐标点都是空间坐标系[x, y, z]形式 class Panel(): #平面的法向量, 由[P_[1], P_[2], P_[3]]唯一确定平面 def normal(self, plain): #平面上的三个点 point_1, point_2, point_3 = plain[0], plain[1], plain[2]; x_1, y_1, z_1 = point_1[0], point_1[1], point_1[2]; x_2, y_2, z_2 = point_2[0], point_2[1], point_2[2]; x_3, y_3, z_3 = point_3[0], point_3[1], point_3[2]; #中间变量 a = (y_2-y_1)*(z_3-z_1) - (y_3-y_1)*(z_2-z_1); b = (z_2-z_1)*(x_3-x_1) - (z_3-z_1)*(x_2-x_1); c = (x_2-x_1)*(y_3-y_1) - (x_3-x_1)*(y_2-y_1); return [a, b, c]; #平面一般式方程,由三个平面点得到Ax+By+Cz+D=0中的四个参数A,B,C,D def genreForm(self, plain): norm = self.normal(plain); a, b, c = norm[0], norm[1], norm[2]; #平面上的三个点 point_1, point_2, point_3 = plain[0], plain[1], plain[2]; x_1, y_1, z_1 = point_1[0], point_1[1], point_1[2]; x_2, y_2, z_2 = point_2[0], point_2[1], point_2[2]; x_3, y_3, z_3 = point_3[0], point_3[1], point_3[2]; d = -(a*x_1+b*y_1+c*z_1); return [a, b, c, d]; #点到平面的距离 def pt2panel(self, point, panel): #平面一般式的参数 a, b, c, d = self.genreForm(panel); x, y, z = point[0], point[1], point[2]; distance = abs((a*x+b*y+c*z+d)/(a**2+b**2+c**2)**0.5); return distance; </span>
<span style="font-size:18px;">#题5 def tmp5(): #三角形ABC, 多给一条边试算 tri_ABC = geo.solveTriangle([3, 2, '?', 60, '?', '?']); print(tri_ABC); BC, AC, AB = tri_ABC[0], tri_ABC[1], tri_ABC[2]; #周长 perimeter = BC+AC+AB; print(perimeter); #角B,转为弧度 B = tri_ABC[4]/180*math.pi; #选项,用于对比 choice = [4*1.732*math.sin(B+math.pi/3)+3, 4*1.732*math.sin(B+math.pi/6)+3, 6*math.sin(B+math.pi/3)+3, 6*math.sin(B+math.pi/6)+3 ]; answer = 'ABCD'; for i in range(4): if abs(choice[i]- perimeter)< 1e-6: print(answer[i]); >>> [3, 2, 3.4494897427831783, 60.0, 35.264389682754654, 84.73561031724536] 8.449489742783179 D </span>
<span style="font-size:18px;">//题7 if (1) { analyze = new DataAnalyze(); a = [9.4, 9.4, 9.4, 9.6, 9.7]; hint(analyze.average(a)); hint(analyze.variance(a)); } 9.5 0.015999999999999886 #题7 def tmp7(): analyze = DataAnalyze(); array = [9.4, 8.4, 9.4, 9.9, 9.6, 9.4, 9.7]; array = sorted(array); array = array[1:-1]; print(array); array = analyze.format(array); sum_ = analyze.sum(array); print(sum_); aver_ = analyze.average(array); print('均值 ', aver_); variance = analyze.variance(array); print('方差 ', variance); #numpy数组的属性 print(array.ndim); print(array.shape); print(array.size); print(array.dtype); print(array.itemsize); print(array.data); >>> [9.4, 9.4, 9.4, 9.6, 9.7] 47.5 均值 9.5 方差 0.016 1 (5,) 5 float64 8 <memory at 0x0205AD50> ### # @usage 数据的集中分析类 # @author mw # @date 2016年05月20日 星期五 10:06:47 # @param # @return # ### class DataAnalyze(): #由于numpy的方法接口只对narray开放,所以,数组先要格式化一下 #对于自己的数组而言,这个方法是必须要先调用一下,才能使用numpy方法的 def format(self, array): return numpy.array(array); #求和 def sum(self, array): return array.sum(); #均值 def average(self, array): return self.sum(array)/len(array); #方差 def variance(self, array): array_ = array*array; sum_ = array_.sum(); aver_ = self.average(array); result = sum_/len(array) - aver_**2; return result; #标准差 def RMS(self, array): return (self.variance)**0.5; </span>
<span style="font-size:18px;">#题9 def tmp9(): a = ['x', '2']; a = alg.strformat(a); a = alg.strpow_n(a, 5); a = alg.strcombine(a); print(a); >>> ['(1)*x^[5]', '(10)*x^[4]', '(40)*x^[3]', '(80)*x^[2]', '(80)*x^[1]', '(32)']</span>
<span style="font-size:18px;">#题16 def tmp16(): print(math.log(0.618)/math.log(3));</span>
<span style="font-size:18px;">#题20 def tmp20(): #甲、乙命中率 p_1 = 2/3; p_2 = 3/4; #(1) print(1-p_1**4); #(2) 有组合数相乘 a = alg.combination(4, 2)*p_1**2*(1-p_1)**2; b = alg.combination(4, 3)*p_2**3*(1-p_2); print(a*b); #(3) a12 = 1-(1-p_2)**2; #前两次,只要不是都不击中 a3 = p_2; #第三次, 必须击中 a45 = (1-p_2)**2; #第四五次,必须不中 print(a12*a3*a45); >>> 0.8024691358024691 0.12500000000000003 0.0439453125</span>
<span style="font-size:18px;">#题21 def tmp21(): #已知边 AS = AB = AE = 2; BC = DE = 1.732; #已知角 A = C = D = 120; #解三角形,数组是以对边对角的方式排列的 tri_ABS = geo.solveTriangle(['?', AS, AB, 90, '?', '?']); BS = tri_ABS[0]; ES = BS; tri_ABE = geo.solveTriangle(['?', AE, AB, A, '?', '?']); BE = tri_ABE[0]; tri_BES = geo.solveTriangle([ES, BS, BE, '?', '?', '?']); print('CD与AB成的角:', tri_BES[3]); >>> CD与AB成的角: 52.23875609296496 >>> math.acos(6**0.5/4)*180/3.142 52.23198356916861 >>> math.acos(6**0.5/4)*180/math.pi 52.23875609296496 #(2) #角B B = (540-A-C-D)/2; #tri_BCD = geo.solveTriangle([CD, '?', BC, '?', C, '?']); print(B); ''' >>> CD与AB成的角: 52.23875609296496 90.0 ''' </span>
本节到此结束,欲知后事如何,请看下回分解。
时间: 2024-12-25 03:12:47