Exploration(hdu5222)

Exploration

Accepts: 190

Submissions: 976

Time Limit: 30000/15000 MS (Java/Others)

Memory Limit: 131072/131072 K (Java/Others)

Problem Description

Miceren likes exploration and he found a huge labyrinth underground!

This labyrinth has NN caves and some tunnels connecting some pairs of caves.

There are two types of tunnel, one type of them can be passed in only one direction and the other can be passed in two directions. Tunnels will collapse immediately after Miceren passing them.

Now, Miceren wants to choose a cave as his start point and visit at least one other cave, finally get back to start point.

As his friend, you must help him to determine whether a start point satisfing his request exists.

Input

The first line contains a single integer TT, indicating the number of test cases.

Each test case begins with three integers N,~M1,~M2N, M1, M2, indicating the number of caves, the number of undirectional tunnels, the number of directional tunnels.

The next M1M1 lines contain the details of the undirectional tunnels. Each line contains two integers u,~vu, v meaning that there is a undirectional tunnel between u,~vu, v. (u~\neq~vu ≠ v)

The next M2M2 lines contain the details of the directional tunnels. Each line contains integers u,~vu, v meaning that there is a directional tunnel from uu to vv. (u~\neq~vu ≠ v)

TT is about 100.

1~\le~N, M1, M2~\le~1000000.1 ≤ N,M1,M2 ≤ 1000000.

There may be some tunnels connect the same pair of caves.

The ratio of test cases with $N~\gt~1000$ is less than 5%.

Output

For each test queries, print the answer. If Miceren can do that, output "YES", otherwise "NO".

Sample Input

2
5 2 1
1 2
1 2
4 5
4 2 2
1 2
2 3
4 3
4 1

Sample Output

YES
NO

Hint

If you need a larger stack size, please use #pragma comment(linker, "/STACK:102400000,102400000") and submit your solution using C++.

思路:并查集+拓扑排序;

先处理无向边,用并查集缩点,然后处理完后,所有的无向边都没了,并且无向边所连的点都缩成一个点,那么剩下的就是有向图了,那么有向图判环用拓扑排序。

  1 #include <stdio.h>
  2 #include <stdlib.h>
  3 #include<iostream>
  4 #include<algorithm>
  5 #include<math.h>
  6 #include<string.h>
  7 #include<map>
  8 #include<vector>
  9 #include<queue>
 10 using namespace std;
 11 #pragma comment(linker, "/STACK:102400000,102400000")
 12 typedef long long LL;
 13 int bin[1000005];
 14 int du[1000005];
 15 vector<int>vec[1000005];
 16 queue<int>que;
 17 int id[1000005];
 18 bool dfs(int n);
 19 int fin(int x);
 20 int cnt[1000005];
 21 bool t[1000005];
 22 int main(void)
 23 {
 24     int n;
 25     scanf("%d",&n);
 26     while(n--)
 27     {
 28         int i,j;
 29         memset(cnt,0,sizeof(cnt));
 30         memset(t,0,sizeof(t));
 31         for(i = 0; i <= 1000000; i++)
 32         {
 33             bin[i] = i;
 34             du[i] = 1;
 35             vec[i].clear();
 36         }
 37         int N,m1,m2;
 38         bool flag = false;
 39         scanf("%d %d %d",&N,&m1,&m2);
 40         while(m1--)
 41         {
 42             int a,b;
 43             scanf("%d %d",&a,&b);
 44             int aa = fin(a);
 45             int bb = fin(b);
 46             if(aa!=bb)
 47             {
 48                 if(du[aa]>du[bb])
 49                 {
 50                     du[aa]+=du[bb];
 51                     bin[bb] = aa;
 52                 }
 53                 else
 54                 {
 55                     du[bb] += du[aa];
 56                     bin[aa] = bb;
 57                 }
 58             }
 59             else flag  = true;
 60         }
 61         while(m2--)
 62         {
 63             int a,b;
 64             scanf("%d %d",&a,&b);
 65             if(!flag)
 66             {
 67                 int aa = fin(a);
 68                 int bb = fin(b);
 69                 if(aa == bb)
 70                     flag = true;
 71                 else
 72                 {   cnt[bb]++;
 73                     vec[aa].push_back(bb);
 74                 }
 75             }
 76         }
 77         if(!flag)
 78         {
 79             int cn = 0;
 80             for(i = 1; i <= N; i++)
 81             {
 82                 int c = fin(i);
 83                 if(!t[c])
 84                 {
 85                     id[cn++] =c;
 86                     t[c] = true;
 87                 }
 88             }
 89             while(!que.empty())que.pop();
 90             int ck = 0;
 91             for(i = 0;i < cn;i++)
 92             {
 93                 if(!cnt[id[i]])
 94                 {
 95                     que.push(id[i]);
 96                     ck++;
 97                 }
 98             }
 99             while(!que.empty())
100             {
101                 int ff = que.front();
102                 que.pop();
103                 for(i = 0;i < vec[ff].size();i++)
104                 {
105                     int k = vec[ff][i];
106                     cnt[k]--;
107                     if(cnt[k] == 0)
108                         ck++,que.push(k);
109                 }
110             }
111             if(cn != ck)
112                 flag = true;
113         }
114         if(flag)printf("YES\n");
115         else printf("NO\n");
116     }
117     return 0;
118 }
119 int fin(int x)
120 {
121     int i;
122     for(i = x; bin[i] != i;)
123         i = bin[i];
124     return i;
125 }

还有拓扑排序部分改成dfs也可以过,数据比较水。

  1 #include <stdio.h>
  2 #include <stdlib.h>
  3 #include<iostream>
  4 #include<algorithm>
  5 #include<math.h>
  6 #include<string.h>
  7 #include<map>
  8 #include<vector>
  9 using namespace std;
 10 #pragma comment(linker, "/STACK:102400000,102400000")
 11 typedef long long LL;
 12 int bin[1000005];
 13 int du[1000005];
 14 vector<int>vec[1000005];
 15 bool vis[1000005];
 16 int id[1000005];
 17 bool t[1000005];
 18 bool dfs(int n);
 19 int fin(int x);
 20 int cnt[1000005];
 21 int main(void)
 22 {
 23     int n;
 24     scanf("%d",&n);
 25     while(n--)
 26     {
 27         int i,j;
 28         memset(vis,0,sizeof(vis));
 29         memset(t,0,sizeof(t));
 30         memset(cnt,0,sizeof(cnt));
 31         for(i = 0; i <= 1000000; i++)
 32         {
 33             bin[i] = i;
 34             du[i] = 1;
 35             vec[i].clear();
 36         }
 37         int N,m1,m2;
 38         bool flag = false;
 39         scanf("%d %d %d",&N,&m1,&m2);
 40         while(m1--)
 41         {
 42             int a,b;
 43             scanf("%d %d",&a,&b);
 44             int aa = fin(a);
 45             int bb = fin(b);
 46             if(aa!=bb)
 47             {
 48                 if(du[aa]>du[bb])
 49                 {
 50                     du[aa]+=du[bb];
 51                     bin[bb] = aa;
 52                 }
 53                 else
 54                 {
 55                     du[bb] += du[aa];
 56                     bin[aa] = bb;
 57                 }
 58             }
 59             else flag  = true;
 60         }
 61         while(m2--)
 62         {
 63             int a,b;
 64             scanf("%d %d",&a,&b);
 65             if(!flag)
 66             {
 67                 int aa = fin(a);
 68                 int bb = fin(b);
 69                 if(aa == bb)
 70                     flag = true;
 71                 else
 72                 {
 73                     vec[aa].push_back(bb);
 74                 }
 75             }
 76         }
 77         if(!flag)
 78         {
 79             int cn = 0;
 80             for(i = 1; i <= N; i++)
 81             {
 82                 int c = fin(i);
 83                 if(!t[c])
 84                 {
 85                     id[cn++] =c;
 86                 }
 87             }
 88             for(i = 0; i <= cn; i++)
 89             {
 90                 if(!vis[id[i]])
 91                 {
 92                     flag = dfs(id[i]);
 93                     if(flag)break;
 94                 }
 95             }
 96         }
 97         if(flag)printf("YES\n");
 98         else printf("NO\n");
 99     }
100     return 0;
101 }
102 int fin(int x)
103 {
104     int i;
105     for(i = x; bin[i] != i;)
106         i = bin[i];
107     return i;
108 }
109 bool dfs(int n)
110 {
111     cnt[n] = 1;
112     vis[n] = true;
113     for(int i = 0; i < vec[n].size(); i++)
114     {
115         int c = vec[n][i];
116         if(cnt[c] == 1)
117         {
118             cnt[c] = 0;
119             return true;
120         }
121         else
122         {
123             if(dfs(c))
124             {
125                 cnt[c] = 0;
126                 return true;
127             }
128         }
129     }
130     cnt[n] = 0;
131     return false;
132 }
时间: 2024-11-05 04:11:11

Exploration(hdu5222)的相关文章

hdu5222 拓扑+并查集

http://acm.hdu.edu.cn/showproblem.php?pid=5222 Problem Description Miceren likes exploration and he found a huge labyrinth underground! This labyrinth has N caves and some tunnels connecting some pairs of caves. There are two types of tunnel, one typ

POJ2594 Treasure Exploration[DAG的最小可相交路径覆盖]

Treasure Exploration Time Limit: 6000MS   Memory Limit: 65536K Total Submissions: 8301   Accepted: 3402 Description Have you ever read any book about treasure exploration? Have you ever see any film about treasure exploration? Have you ever explored

RFID Exploration and Spoofer a bipolar transistor, a pair of FETs, and a rectifying full-bridge followed by a loading FET

RFID Exploration Louis Yi, Mary Ruthven, Kevin O'Toole, & Jay Patterson What did you do? We made an Radio Frequency ID (RFID) card reader and, while attempting to create a long-range spoofer, created an jammer which overcomes card's signals. The read

poj 2594 Treasure Exploration 二分图匹配

点击打开链接题目链接 Treasure Exploration Time Limit: 6000MS   Memory Limit: 65536K Total Submissions: 7215   Accepted: 2947 Description Have you ever read any book about treasure exploration? Have you ever see any film about treasure exploration? Have you eve

POJ 2594 Treasure Exploration(最小路径覆盖变形)

POJ 2594 Treasure Exploration 题目链接 题意:有向无环图,求最少多少条路径能够覆盖整个图,点能够反复走 思路:和普通的最小路径覆盖不同的是,点能够反复走,那么事实上仅仅要在多一步.利用floyd求出传递闭包.然后依据这个新的图去做最小路径覆盖就可以 代码: #include <cstdio> #include <cstring> #include <vector> #include <algorithm> using names

poj 2594 Treasure Exploration (二分匹配)

Treasure Exploration Time Limit: 6000MS   Memory Limit: 65536K Total Submissions: 6558   Accepted: 2644 Description Have you ever read any book about treasure exploration? Have you ever see any film about treasure exploration? Have you ever explored

Incentivizing exploration in reinforcement learning with deep predictive models

Stadie, Bradly C., Sergey Levine, and Pieter Abbeel. "Incentivizing exploration in reinforcement learning with deep predictive models." arXiv preprint arXiv:1507.00814 (2015). 作者通过模拟(状态,动作)的不确定性,从而修改reward,帮助agent进行探索.作者说用了他们的方法不用进行随机探索.该方法比较通用,

”赛码杯“ Exploration

Problem Description Miceren likes exploration and he found a huge labyrinth underground! This labyrinth has N caves and some tunnels connecting some pairs of caves. There are two types of tunnel, one type of them can be passed in only one direction a

UVA 784-Maze Exploration(dfs)

Maze Exploration A maze of rectangular rooms is represented on a two dimensional grid as illustrated in figure 1a. Each point of the grid is represented by a character. The points of room walls are marked by the same character which can be any printa