Consider this sequence {1, 2, 3, . . . , N}, as a initial sequence of ?rst N natural numbers. You can
earrange this sequence in many ways. There will be N! di?erent arrangements. You have to calculate
the number of arrangement of ?rst N natural numbers, where in ?rst M (M ≤ N) positions, exactly
K (K ≤ M) numbers are in its initial position.
Example:
For, N = 5, M = 3, K = 2
You should count this arrangement {1, 4, 3, 2, 5}, here in ?rst 3 positions 1 is in 1-st position and
3 in 3-rd position. So exactly 2 of its ?rst 3 are in there initial position.
But you should not count this {1, 2, 3, 4, 5}.
Input
The ?rst line of input is an integer T (T ≤ 1000) that indicates the number of test cases. Next T line
contains 3 integers each, N (1 ≤ N ≤ 1000), M, and K.
Output
For each case, output the case number, followed by the answer modulo 1000000007. Look at the sample
for clari?cation.
Sample Input
1
5 3 2
Sample Output
Case 1: 12
题意:给你 n,m,k, 表示a[i] = 1,2....,n 经过变换后-> 前m个数中只有任意 k个数满足 i = a[i]问你方案数
题解:我们 先在前m个数中任意选k个数是满足不变的 即 C(m,k);
再枚举后n-m个中有多少个数的位置是不变的,C(n−m,x),这样就有n−k−x个数为乱序排列。
对于y个数乱序排序,我们考虑dp做法,假设已经 求出 y-1,y-2个数的乱序排序数,那么 dp[y] = (y-1)*(dp[y-1]+dp[y-2]);(详见上一题)
//meek///#include<bits/stdc++.h> #include <cstdio> #include <cmath> #include <cstring> #include <algorithm> #include<iostream> #include<bitset> #include<vector> #include <queue> #include <map> #include <set> #include <stack> using namespace std ; #define mem(a) memset(a,0,sizeof(a)) #define pb push_back #define fi first #define se second #define MP make_pair typedef long long ll; const int N = 1000+100; const int M = 1000001; const int inf = 0x3f3f3f3f; const ll MOD = 1000000007; int n, m, k; ll dp[N], c[N][N]; void init () { for (int i = 0; i < N; i++) { c[i][0] = c[i][i] = 1; for (int j = 1; j < i; j++) c[i][j] = (c[i-1][j-1] + c[i-1][j]) % MOD; } dp[0] = 1; dp[1] = 0; dp[2] = 1; for (ll i = 3; i < N; i++) dp[i] = ((dp[i-1] + dp[i-2]) % MOD * (i-1)) % MOD; } ll solve () { ll ans = 0; int t = n - m; for(int i = 0;i <= n-m; i++) ans += (c[t][i]*dp[n-k-i]), ans %= MOD; return (ans * c[m][k]) % MOD; } int main () { init(); int cas = 1 , T; scanf("%d", &T); while(T--) { scanf("%d%d%d", &n, &m, &k); printf("Case %d: %lld\n", cas++, solve()); } return 0; }
代码