[Java] TreeMap - 源代码学习笔记

TreeMap 实现了 SortedMap 和 NavigableMap 接口,所有本文还会记录 SortedMap 和 NavigableMap 的阅读笔记。

SortedMap

1. 排序的比较应该和 equals(Object) 保持一致

2. 应该提供四种“标准”的构造器

  1). 无参构造器

  2). 带一个 Comparator 为参数的构造器

  3). 带一个 Map 为参数的构造器

  4). 带一个 SortedMap 为参数的构造器

3.  subMap ,  headMap ,  tailMap ,  KeySet ,  values,  entrySet  等方法返回的 Map 或 Set 和 SortedMap 本身使用同一份数据,所以对 subMap 返回的 Map 进行修改,同样会反映到 SortedMap 上。

NavigableMap

1. lowerEntry, floorEntry, ceilingEntry, higherEntry 分别返回 小于、小于或等于,大于或等于,以及大于给定 key 的 Map.Entry。这类型的方法用于定位离目标给定值最近的元素。

2. 增长序 map 的操作比递减序的 map 的操作要快。

3. 返回 entry 的方法返回的是那一刻的 entry 快照,所以通常不支持 Entry.setValue 方法。

例如, TreeMap 实现 NavigableMap 的 firstEntry,返回会的就是根据给定 entry 的 key, value 新建的不可变

SimpleImmutableEntry 对象。

4. pollFirstEntry 删除并返回第一个元素

TreeMap

1. 基于红黑树的实现

2. 根据自然序,或者给定的比较器是内部元素保持有序。

3. 提供复杂度为 log(n) 的 containsKey, get, put, remove 操作

4. itertator 采用 fast-fail 机制

5. values 继承于 Collection, EntrySet 和 KeySet 则继承于 Set

6. DeletionEntry 删除指定的元素,fixAfterDeletion 对删除后的树节点进行再平衡,使得 TreeMap 保持红黑树的特性。

7. containsValue(Object) 通过遍历所有元素,来判断是否包含指定的值为 value。因此,效率低。

    public boolean containsValue(Object value) {
        for (Entry<K,V> e = getFirstEntry(); e != null; e = successor(e))
            if (valEquals(value, e.value))
                return true;
        return false;
    }

8. getFirstEntry 返回树中最左下角的元素

    final Entry<K,V> getFirstEntry() {
        Entry<K,V> p = root;
        if (p != null)
            while (p.left != null)
                p = p.left;
        return p;
    }

getLastEntry 返回树中最右下角的元素

    final Entry<K,V> getLastEntry() {
        Entry<K,V> p = root;
        if (p != null)
            while (p.right != null)
                p = p.right;
        return p;
    }

  

9. successor(Entry e)

当 e 为 null 时,返回 null

当 e 有右子节点时,则返回右子节点的最左下角后代节点

当 e 没有右子节点时,返回一个离 e 最近的祖先节点,该祖先节的左孩子也是 e 的祖先节点。

    static <K,V> TreeMap.Entry<K,V> successor(Entry<K,V> t) {
        if (t == null)
            return null;
        else if (t.right != null) {
            Entry<K,V> p = t.right;
            while (p.left != null)
                p = p.left;
            return p;
        } else {
            Entry<K,V> p = t.parent;
            Entry<K,V> ch = t;
            while (p != null && ch == p.right) {
                ch = p;
                p = p.parent;
            }
            return p;
        }
    }

10. prodecessor(Entry e) 和 successor(Entry e) 思路相似。

当 e 为 null 时,返回 null

当 e 有左子节点时,则返回左子节点的最右下角后代节点

当 e 没有左子节点时,返回一个离 e 最近的祖先节点,该祖先节的右孩子也是 e 的祖先节点。

    static <K,V> Entry<K,V> predecessor(Entry<K,V> t) {
        if (t == null)
            return null;
        else if (t.left != null) {
            Entry<K,V> p = t.left;
            while (p.right != null)
                p = p.right;
            return p;
        } else {
            Entry<K,V> p = t.parent;
            Entry<K,V> ch = t;
            while (p != null && ch == p.left) {
                ch = p;
                p = p.parent;
            }
            return p;
        }
    }

11. get(Object):V 和 getEntry(Object):Entry 的不同点在于,前者返回 V, 而后者返回 Entry。获取的算法一样,因为 get 是基于 getEntry 来实现的。

    public V get(Object key) {
        Entry<K,V> p = getEntry(key);
        return (p==null ? null : p.value);
    }

12. containsKey(Object) 同样也是基于 getEntry 来实现的

    public boolean containsKey(Object key) {
        return getEntry(key) != null;
    }

13. computeRedLevel(int) ,应用于复制一个 map 到当前为空的 TreeMap 的操作中。复制后的 TreeMap 应该是一棵完全二叉树(complete binary tree),通过将其中满足完美二叉树(perfect binary tree)部分的节点涂黑,则可以简单地实现红黑树的黑属性

    private static int computeRedLevel(int sz) {
        int level = 0;
        for (int m = sz - 1; m >= 0; m = m / 2 - 1)
            level++;
        return level;
    }

下面是一个完全二叉树的例子,其中满足完美二叉树的只有 0 - 7 个节点,也就是 0 - 2 层。0 - 2 层的节点全部涂黑色,最后一层则全部涂红色。则最方便地满足红黑树的特性。

14. buildFromSorted, 采用递归的思路,先构建后节点的左子树,在构建好节点的右子树,最后和节点组合成一个完整的子树。

15. putAll(Map),

当 TreeMap 没有元素,Map 是一个 sortMap, 并且 Map 的比较器等于 TreeMap 的比较器,则采用 buildFormSorted 来构建 TreeMap。

否则,将 Map 中每个 mapping,通过调用 put(K, V) 来插入 TreeMap 中。

    public void putAll(Map<? extends K, ? extends V> map) {
        int mapSize = map.size();
        if (size==0 && mapSize!=0 && map instanceof SortedMap) {
            Comparator<?> c = ((SortedMap<?,?>)map).comparator();
            if (c == comparator || (c != null && c.equals(comparator))) {
                ++modCount;
                try {
                    buildFromSorted(mapSize, map.entrySet().iterator(),
                                    null, null);
                } catch (java.io.IOException cannotHappen) {
                } catch (ClassNotFoundException cannotHappen) {
                }
                return;
            }
        }
        super.putAll(map);
    }

16. getEntry, getEntryUsingComparator, getCeilingEntry, getFloorEntry, getHigherEntry, getLowerEntry 都是基于二分查找思路来实现元素操作。

17. put(K, V)

当已存在 key 和 K 相等的 Entry, 则直接更新这个 Entry 的 value 值。

否则,插入新的 Entry ,然后自平衡树结构。

18. remove(Object),删除指定节点,然后自平衡树结构

19. clear(), 将 root 至 null 即可

    public void clear() {
        modCount++;
        size = 0;
        root = null;
    }

20.  firstEntry 返回不可变的 Entry , getFirstEntry 则返回可变的 Entry。同样关系的还有:lastEntry 和 getLastEntry,lowerEntry 和 getLowerEntry, higherEntry 和 getHigherEntry。

Jdk 版本: jdk1.8.0_31.jdk

时间: 2024-11-04 19:28:14

[Java] TreeMap - 源代码学习笔记的相关文章

Java ArrayList源代码学习笔记

<span style="font-size:18px;"> private static final int MIN_CAPACITY_INCREMENT = 12;</span> ArrayList每次增量为12,大小以0开始(初始化且无内容时),之后每次递增12. 构造方法: <span style="font-size:18px;">public ArrayList(int capacity) { if (capacity

[Java] Collections - 源代码学习笔记

Collection interface 集合接口 1. 在 Collections 体系中,接口 Collection 是根接口 2. 是指一组对象,这些对象被称为 Collection 的元素. 3. 有一些 Collection 允许重复元素,例如 List .另一些则不允许,例如 Set 4. 有一些实现的元素是有序的,另一些则是无序的. 5. 提供两个“标准”的构造器 a. 无参构造器 b. 仅有一个参数的构造器,该参数类型是 Collection 6. 当存在自引用情况是,涉及递归遍

[Java] LinkedList / Queue - 源代码学习笔记

简单地画了下 LinkedList 的继承关系,如下图.只是画了关注的部分,并不是完整的关系图.本博文涉及的是 Queue, Deque, LinkedList 的源代码阅读笔记.关于 List 接口的笔记,可以参考上一篇博文 List / ArrayList - 源代码学习笔记 Queue 1. 继承 Collection 接口,并提供了额外的插入.提取和查看元素的方法.新增的方法都有两种形式:当操作失败时,抛出异常或者返回一个特殊值.特殊值可以是 null 或者 false ,这取决于方法本

java/android 设计模式学习笔记(6)---适配器模式

这篇来介绍一下适配器模式(Adapter Pattern),适配器模式在开发中使用的频率也是很高的,像 ListView 和 RecyclerView 的 Adapter 等都是使用的适配器模式.在我们的实际生活中也有很多类似于适配器的例子,比如香港的插座和大陆的插座就是两种格式的,为了能够成功适配,一般会在中间加上一个电源适配器,形如: 这样就能够将原来不符合的现有系统和目标系统通过适配器成功连接. 说到底,适配器模式是将原来不兼容的两个类融合在一起,它有点类似于粘合剂,将不同的东西通过一种转

java/android 设计模式学习笔记(14)---外观模式

这篇博客来介绍外观模式(Facade Pattern),外观模式也称为门面模式,它在开发过程中运用频率非常高,尤其是第三方 SDK 基本很大概率都会使用外观模式.通过一个外观类使得整个子系统只有一个统一的高层的接口,这样能够降低用户的使用成本,也对用户屏蔽了很多实现细节.当然,在我们的开发过程中,外观模式也是我们封装 API 的常用手段,例如网络模块.ImageLoader 模块等.其实我们在开发过程中可能已经使用过很多次外观模式,只是没有从理论层面去了解它. 转载请注明出处:http://bl

java/android 设计模式学习笔记(10)---建造者模式

这篇博客我们来介绍一下建造者模式(Builder Pattern),建造者模式又被称为生成器模式,是创造性模式之一,与工厂方法模式和抽象工厂模式不同,后两者的目的是为了实现多态性,而 Builder 模式的目的则是为了将对象的构建与展示分离.Builder 模式是一步一步创建一个复杂对象的创建型模式,它允许用户在不知道内部构建细节的情况下,可以更精细地控制对象的构造流程.一个复杂的对象有大量的组成部分,比如汽车它有车轮.方向盘.发动机.以及各种各样的小零件,要将这些部件装配成一辆汽车,这个装配过

java/android 设计模式学习笔记(一)---单例模式

前段时间公司一些同事在讨论单例模式(我是最渣的一个,都插不上嘴 T__T ),这个模式使用的频率很高,也可能是很多人最熟悉的设计模式,当然单例模式也算是最简单的设计模式之一吧,简单归简单,但是在实际使用的时候也会有一些坑. PS:对技术感兴趣的同鞋加群544645972一起交流 设计模式总目录 java/android 设计模式学习笔记目录 特点 确保某一个类只有一个实例,而且自行实例化并向整个系统提供这个实例. 单例模式的使用很广泛,比如:线程池(threadpool).缓存(cache).对

java/android 设计模式学习笔记(7)---装饰者模式

这篇将会介绍装饰者模式(Decorator Pattern),装饰者模式也称为包装模式(Wrapper Pattern),结构型模式之一,其使用一种对客户端透明的方式来动态的扩展对象的功能,同时它也是继承关系的一种替代方案之一,但比继承更加灵活.在现实生活中也可以看到很多装饰者模式的例子,或者可以大胆的说装饰者模式无处不在,就拿一件东西来说,可以给它披上无数层不一样的外壳,但是这件东西还是这件东西,外壳不过是用来扩展这个东西的功能而已,这就是装饰者模式,装饰者的这个角色也许各不相同但是被装饰的对

java/android 设计模式学习笔记(13)---享元模式

这篇我们来介绍一下享元模式(Flyweight Pattern),Flyweight 代表轻量级的意思,享元模式是对象池的一种实现.享元模式用来尽可能减少内存使用量,它适合用于可能存在大量重复对象的场景,缓存可共享的对象,来达到对象共享和避免创建过多对象的效果,这样一来就可以提升性能,避免内存移除和频繁 GC 等. 享元模式的一个经典使用案例是文本系统中图形显示所用的数据结构,一个文本系统能够显示的字符种类就是那么几十上百个,那么就定义这么些基础字符对象,存储每个字符的显示外形和其他的格式化数据