n的幂

题目:给你一个数n,判断n是不是某个数的幂,,这个数题目里会给出,leetCode上有三道题,分别是2的幂,3的幂,4的幂

思路:方法都一样,while循环而已

//2的幂
public class Solution {
    public boolean isPowerOfFour(int num) {
        if(num>1){
            while(num%2==0)
                num/=2;
        }
        return num==1;
    }
}
//3的幂
public class Solution {
    public boolean isPowerOfFour(int num) {
        if(num>1){
            while(num%3==0)
                num/=3;
        }
        return num==1;
    }
}
//4的幂
public class Solution {
    public boolean isPowerOfFour(int num) {
        if(num>1){
            while(num%4==0)
                num/=4;
        }
        return num==1;
    }
}
时间: 2024-10-12 21:58:01

n的幂的相关文章

矩阵快速幂刷题系列

来源自http://blog.csdn.net/chenguolinblog/article/details/10309423 hdu 1575 Tr A Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 5587    Accepted Submission(s): 4200 Problem Description A为一个方阵,则Tr

快速判断一个数是否是4的幂次方,若是,并判断出来是多少次方!

将4的幂次方写成2进制形式后,很容易发现有个特点,2进制中只有1个1(1在奇数位置),并且后面跟了偶数个0:因此问题可以转化为判断1后面是否跟了偶数个0就可以了. 4的整数次幂的二进制可以写为2^(2*n),即也可以写成2的幂次方,当然就满足2的幂次方的条件,即num&(num-1)==0. 思路:首先用条件num&(num-1)==0来判断是否为2的幂次方,若不满足,则不是.若满足,再用条件num&0x5555 5555 来判断,若为真,则这个整数是4 的幂次方.否则不是. #i

计算机中如何实现除数是2的幂次的除法【转载自CSDN】

前言: 本来是在看汇编里面的数据条件传送指令,做习题的时候看着这么一道有关于2的幂次方除法的题目.结果傻眼了,又尼玛不会了.........第二章看的时候就稀里糊涂的,看了几遍也没看太懂,这回又涉及到了 ,发现再回来看还是容易一点.所以写此博文,方便日后复习. 我今天遇到的问题如下: 问题: 除法,在我们平时的算数运算中,结果总是向0的方向舍入的,但是在计算机中,舍入的方式有所不同.在大多数的机器中,除法要比乘法还有加法这些运算都要慢很多倍,计算机中对于2的幂次这种数很是敏感,因为计算机当中用到

快速幂取模(POJ 1995)

http://poj.org/problem?id=1995 以这道题来分析一下快速幂取模 a^b%c(这就是著名的RSA公钥的加密方法),当a,b很大时,直接求解这个问题不太可能 利用公式a*b%c=((a%c)*b)%c 每一步都进行这种处理,这就解决了a^b可能太大存不下的问题,但这个算法的时间复杂度依然没有得到优化 由此可以用快速幂算法优化: http://www.cnblogs.com/qlky/p/5020402.html 再结合取模公式: (a + b) % p = (a % p

HDU 1757 A Simple Math Problem (矩阵快速幂)

[题目链接]:click here~~ [题目大意]: If x < 10 f(x) = x. If x >= 10 f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + -- + a9 * f(x-10); 问f(k)%m的值. [思路]:矩阵快速幂,具体思路看代码吧,注意一些细节. 代码: #include<bits/stdc++.h> using namespace std; typedef long long LL; const

快速幂及快速幂取模

快速幂顾名思义,就是快速算某个数的多少次幂.其时间复杂度为 O(log?N), 与朴素的O(N)相比效率有了极大的提高.——bybaidu 快速幂可以用位运算这个强大的工具实现. 代码: 1 int pow(int a,int b) 2 { 3 int ans=1; 4 while(b!=0) 5 { 6 if(b&1) 7 ans*=a; 8 a*=a; 9 b>>=1; 10 } 11 return ans; 12 } 快速幂取模需要记住一个定理:积的取模等于取模积的取模:算法是蒙

Codeforces Round #291 (Div. 2) E - Darth Vader and Tree (DP+矩阵快速幂)

这题想了好长时间,果断没思路..于是搜了一下题解.一看题解上的"快速幂"这俩字,不对..这仨字..犹如醍醐灌顶啊...因为x的范围是10^9,所以当时想的时候果断把dp递推这一方法抛弃了.我怎么就没想到矩阵快速幂呢.......还是太弱了..sad..100*100*100*log(10^9)的复杂度刚刚好. 于是,想到了矩阵快速幂后,一切就变得简单了.就可以把距离<=x的所有距离的点数都通过DP推出来,然后一个快速幂就解决了. 首先DP递推式很容易想到.递推代码如下: for(

NYOJ127 星际之门(一)(最小生成数的个数+快速幂)

题目描述: http://acm.nyist.net/JudgeOnline/problem.php?pid=127 可以证明,修建N-1条虫洞就可以把这N个星系连结起来. 现在,问题来了,皇帝想知道有多少种修建方案可以把这N个星系用N-1条虫洞连结起来? 输入 第一行输入一个整数T,表示测试数据的组数(T<=100) 每组测试数据只有一行,该行只有一个整数N,表示有N个星系.(2<=N<=1000000) 输出 对于每组测试数据输出一个整数,表示满足题意的修建的方案的个数.输出结果可能

POJ 3233 - Matrix Power Series ( 矩阵快速幂 + 二分)

POJ 3233 - Matrix Power Series ( 矩阵快速幂 + 二分) #include <cstdio> #include <cstring> #include <algorithm> using namespace std; typedef long long LL; #define MAX_SIZE 30 #define CLR( a, b ) memset( a, b, sizeof(a) ) int MOD = 0; int n, k; st

HDU 4990 Reading comprehension(找规律+矩阵快速幂)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4990 Problem Description Read the program below carefully then answer the question. #pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include<iostream> #include