【20161111】双十一特价模拟赛

Ib的沙漏(hourglass)

正当Ib欣赏着一副诡异的画时,大厅的灯闪烁了几下,便熄灭了

墙上流出了蓝色的液体,上面写着……

Ib满怀着恐惧的走出大厅,发现整个美术馆已经空无一人,大门紧锁,灯光也暗淡了下来,正当她感到无望时,她想起了自己的神奇沙漏,这个沙漏由n个小沙漏组成,第i个小沙漏的沙子数量为ai,这个沙漏有一个神奇的性质,如果用手拨动第i个小沙漏,这个沙漏的沙子数量会变成sqrt(ai)(向下取整),Ib经常玩弄她的沙漏以打发时间,有时她会用手连续拨动第l到r个小沙漏,有时她会数第l到r个小沙漏的沙子数量之和为多少,可惜Ib今早把沙漏忘在家里了,希望你能帮她模拟一个沙漏,这样也许她就不会害怕了,额…

Input

第一行一个整数n

第二行n个整数a1,a2,…,an,(0<=ai<=10^9)

第三行一个整数m表示Ib玩弄沙漏的次数

接下来m行,每行三个整数t,l,r

若t=1表示Ib数第l到r个小沙漏的沙子数量之和

若t=2表示Ib拨动第l到r个小沙漏

Output

每次t=1时,每行一个整数,表示第l到r个小沙漏的沙子数量之和

Sample Input

4

1 100 5 5

5

1 1 2

2 1 2

1 1 2

2 2 3

1 1 4

Sample Output

101

11

11

数据范围:

30%:n,m<=1000

100%:n,m<=100000



我们可以发现一个10^9的数最多开方5次就变成1了。

然后在线段树上维护一个标记(当前是否全是0或者1)。

修改最多就5nlogn

 1 #include<cstdio>
 2 #include<cstdlib>
 3 #include<cstring>
 4 #include<cmath>
 5 #include<algorithm>
 6 #include<iostream>
 7 using namespace std;
 8
 9 typedef long long LL;
10 const int N=2*100010;
11 int n,m,tl;
12 LL a[N];
13 struct trnode{
14     int l,r,lc,rc,c;
15     LL sum;
16 }t[2*N];
17 int o=0;
18
19 int bt(int l,int r)
20 {
21     int x=++tl;
22     t[x].l=l;t[x].r=r;
23     t[x].lc=t[x].rc=0;
24     t[x].c=0;t[x].sum=0;
25     if(l<r)
26     {
27         int mid=(l+r)/2;
28         t[x].lc=bt(l,mid);
29         t[x].rc=bt(mid+1,r);
30         int lc=t[x].lc,rc=t[x].rc;
31         t[x].c=t[lc].c&t[rc].c;
32         t[x].sum=t[lc].sum+t[rc].sum;
33     }
34     else
35     {
36         if(a[l]==1 || a[l]==0) t[x].c=1;
37         t[x].sum=a[l];
38     }
39     return x;
40 }
41
42 LL query(int x,int l,int r)
43 {
44     if(t[x].l==l && t[x].r==r) return t[x].sum;
45     int lc=t[x].lc,rc=t[x].rc,mid=(t[x].l+t[x].r)/2;
46     if(r<=mid) return query(lc,l,r);
47     if(l>mid) return query(rc,l,r);
48     return query(lc,l,mid)+query(rc,mid+1,r);
49 }
50
51 void change(int x,int l,int r)
52 {
53     if(t[x].l==l && t[x].r==r && t[x].c==1) return ;
54     if(t[x].l==t[x].r)
55     {
56         t[x].sum=(LL)sqrt((double)t[x].sum);
57         if(t[x].sum==1 || t[x].sum==0) t[x].c=1;
58         // if(o) printf("t[x] .l = %d  r = %d  c = %d  sum = %d\n",t[x].l,t[x].r,t[x].c,t[x].sum);
59         return;
60     }
61     int lc=t[x].lc,rc=t[x].rc,mid=(t[x].l+t[x].r)/2;
62     if(r<=mid) change(lc,l,r);
63     else if(l>mid) change(rc,l,r);
64     else
65     {
66         change(lc,l,mid);
67         change(rc,mid+1,r);
68     }
69     t[x].c=t[lc].c&t[rc].c;
70     t[x].sum=t[lc].sum+t[rc].sum;
71     // if(o) printf("t[x] .l = %d  r = %d  c = %d  sum = %d\n",t[x].l,t[x].r,t[x].c,t[x].sum);
72 }
73
74 int main()
75 {
76     // freopen("a.in","r",stdin);
77     // freopen("a.out","w",stdout);
78     freopen("hourglass.in","r",stdin);
79     freopen("hourglass.out","w",stdout);
80     scanf("%d",&n);
81     for(int i=1;i<=n;i++) scanf("%lld",&a[i]);
82     tl=0;t[0].sum=0;t[0].c=1;
83     bt(1,n);
84     scanf("%d",&m);
85     int tmp,l,r;
86     for(int i=1;i<=m;i++)
87     {
88         scanf("%d%d%d",&tmp,&l,&r);
89         if(l>r) swap(l,r);
90         if(tmp==1) printf("%lld\n",query(1,l,r));
91         else change(1,l,r);
92     }
93     return 0;
94 }



诡异的雕塑(sculpture)

玩腻了沙漏的Ib决定勇敢地前进,她走进了一幅画中,来到了画中的世界!额… 在这里她遇到了与自己一样迷失在画中的Garry,

于是他们决定结伴而行,继续在画中的世界探索。

他们来到了一个绿色房间,这个房间没有出口,只有一排诡异的雕塑,聪明的Ib一看就知道要怎么做了,这里一共有n个雕塑,第i个雕塑的高度位hi,只要把这些雕塑摆成类似于一个山峰的形状就行了,具体地说,存在i使得对于1<=j<i,h[j]<=h[j+1], 对于i<j<=n,h[j-1]>=h[j],摆成这样后,房间的,们就会自动打开,当然Ib可搬不动这些雕塑,她只能向Garry求助,Garry每次只能交换相邻的两个雕塑,为了帮Garry节省力气继续后面的闯关,请你求出最少的交换次数。

Input

第一行一个正整数n

接下来n行,第i行一个整数hi

Output

输出一个整数,表示Garry最少需要的交换次数

Sample Input

6

2

8

4

5

3

6

Sample Output

3

HINT

最终的高度序列为2 4 5 8 6 3,共需要操作三次。

3<=n<=3*10^5

1<=hi<=10^9

数据范围

30% n<=10

100% n<=300000



这题没做出来是真的不应该。。这不就是之前的逆序空位插入法吗?!

首先我们给原序列一个编号1,2,3,...,n

假设按最后的状态是2,3,5,...,1

每个元素的交换次数就是逆序对的个数。

当然我们可以不这样想。

对于每个元素,从小到大先排序,我们考虑当前最小的。

它一定会走到最左或者最右边,而且它到了之后对后边的答案没有影响(它到了之后没有东西会来跟它交换位置)

模拟样例吧:

2 8 4 5 3 6

编号     1 2 3 4 5 6

对于2,它到最左边不需要交换。ans+0;

变成    8 4 5 3 6

编号    2 3 4 5 6

对于3,它到最左边要3次,到最右边1次。ans+1

变成    8 4 5 6

编号    2 3 4 6

.............

以此类推,每次删除一个数之后都要在树状数组上删除它。

注意相等的数之间是不会产生逆序对的(不然你就直接当它们交换了位置)

 1 #include<cstdio>
 2 #include<cstdlib>
 3 #include<cstring>
 4 #include<iostream>
 5 #include<cmath>
 6 #include<algorithm>
 7 using namespace std;
 8
 9 typedef long long LL;
10 const int N=300010;
11 int n,c[N];
12 struct node{int d,id;}a[N];
13
14 bool cmp(node x,node y){return x.d<y.d;}
15 int minn(int x,int y){return x<y ? x:y;}
16
17 int add(int x,int d)
18 {
19     for(int i=x;i<=n;i+=(i&(-i))) c[i]+=d;
20 }
21 int getsum(int x)
22 {
23     int ans=0;
24     for(int i=x;i>=1;i-=(i&(-i))) ans+=c[i];
25     return ans;
26 }
27
28 int main()
29 {
30     // freopen("a.in","r",stdin);
31     // freopen("a.out","w",stdout);
32     freopen("sculpture.in","r",stdin);
33     freopen("sculpture.out","w",stdout);
34     scanf("%d",&n);
35     for(int i=1;i<=n;i++)
36     {
37         scanf("%d",&a[i].d);
38         a[i].id=i;
39     }
40     sort(a+1,a+1+n,cmp);
41     memset(c,0,sizeof(c));
42     for(int i=1;i<=n;i++) add(i,1);
43     int k=1,s=n,now;
44     LL ans=0;
45     for(int i=1;i<=n+1;i++)
46     {
47         if(a[i].d==a[i-1].d) continue;
48         for(int j=k;j<i;j++) add(a[j].id,-1),s--;
49         for(int j=k;j<i;j++)
50         {
51             now=getsum(a[j].id-1);
52             ans+=(LL)minn(now,s-now);
53         }
54         k=i;
55     }
56     printf("%lld\n",ans);
57     return 0;
58 }


Mary的游戏(game)

继续前进Ib和Garry又遇见了迷失在画中的世界里的Mary(左)

现在Mary被一个游戏难住了,没有玩出这个游戏Mary就不走了,可是以Mary的智商恐怕很难通关,为了尽快逃离这个地方,请你这帮Mary通关吧

Mary有一个n*m的矩形卡片,每个格子有权值Aij,每条边有权值,现在Mary要求一个联通块,使得格子的权值Aij/联通块边界上的边的权值之和最大。具体见样例

Input

第一行为两个正整数n,m。

接下来n行,每行m个非负整数,表示对应格子的价值。

接下来n+1行,每行m个正整数,表示所有横向的格线上的费用。

接下来n行,每行m+1个正整数,表示所有纵向的格线上的费用。

(所有数据均按从左到右,从上到下的顺序输入,参见样例和配图)

Output

输出一行仅含一个数,表示最大的V/C,保留3位小数。

Sample Input

3 4

1 3 3 3

1 3 1 1

3 3 1 0

100 1 1 1

97 96 1 1

1 93 92 92

1 1 90 90

98 1 99 99 1

95 1 1 1 94

1 91 1 1 89

Sample Output

1.286

HINT

数据范围 30% n,m<=5  100% n,m<=50



这题明显01分数规划,r=v/c;

设z=v-rc,我们二分r,然后判断z是否可以>=0。

然后我们发现最小割上不跑z就可以==0,那就一个连通块都没有。。那么我们判断的时候直接让z>0才可以。

之前一直在纠结一个联通块的问题,但是其实要是有两个连通块让z>0那也是没有关系的,因为我们已经转化成判定性问题,那这两个之中必定有1个能让z>0。

那就转化成了一个经典的网络流问题,也就是之前的海洋陆地问题。

  1 #include<cstdio>
  2 #include<cstdlib>
  3 #include<cstring>
  4 #include<cmath>
  5 #include<algorithm>
  6 #include<iostream>
  7 #include<queue>
  8 using namespace std;
  9
 10 const int N=3010;
 11 const double INF=(double)1e9;
 12 int n,m,len,dis[N],first[N];
 13 int dx[3]={0,-1,0};
 14 int dy[3]={0,0,-1};
 15 double sum,A[60][60],b[60][60],c[60][60];
 16 struct node{
 17     int x,y,next;
 18     double d;
 19 }a[100010];
 20 queue<int> q;
 21
 22 int idx(int x,int y){return (x-1)*m+y;}
 23 double myabs(double x){return x>0 ? x:-x;}
 24 double minn(double x,double y){return x<y ? x:y;}
 25
 26 void ins(int x,int y,double d)
 27 {
 28     a[++len].x=x;a[len].y=y;a[len].d=d;
 29     a[len].next=first[x];first[x]=len;
 30
 31     a[++len].x=y;a[len].y=x;a[len].d=0;
 32     a[len].next=first[y];first[y]=len;
 33 }
 34
 35 bool bfs(int st,int ed)
 36 {
 37     while(!q.empty()) q.pop();
 38     memset(dis,-1,sizeof(dis));
 39     q.push(st);dis[st]=0;
 40     while(!q.empty())
 41     {
 42         int x=q.front();q.pop();
 43         for(int i=first[x];i!=-1;i=a[i].next) if(a[i].d>0)
 44         {
 45             int y=a[i].y;
 46             if(dis[y]==-1)
 47             {
 48                 dis[y]=dis[x]+1;
 49                 q.push(y);
 50             }
 51         }
 52     }
 53     return (dis[ed]!=-1);
 54 }
 55
 56 double dfs(int x,int ed,double flow)
 57 {
 58     if(x==ed) return flow;
 59     double r=0,p;
 60     for(int i=first[x];i!=-1;i=a[i].next) if(a[i].d>0)
 61     {
 62         int y=a[i].y;
 63         if(dis[y]==dis[x]+1)
 64         {
 65             p=minn(flow-r,a[i].d);
 66             p=dfs(y,ed,p);
 67             r+=p;
 68             a[i].d-=p;
 69             a[i^1].d+=p;
 70         }
 71         if(myabs(r-flow)<0.00001) break;
 72     }
 73     if(r==0) dis[x]=-1;
 74     return r;
 75 }
 76
 77 double dinic(int st,int ed)
 78 {
 79     double ans=0;
 80     while(bfs(st,ed)) ans+=dfs(st,ed,INF);
 81     // printf("ans = %lf\n",ans);
 82     return ans;
 83 }
 84
 85 void output()
 86 {
 87     for(int i=0;i<=len;i+=2)
 88     {
 89         printf("%d -- > %d  %lf\n",a[i].x,a[i].y,a[i].d);
 90     }
 91 }
 92
 93 bool check(double r)
 94 {
 95     len=-1;
 96     memset(first,-1,sizeof(first));
 97     int S=0,T=n*m+1,x,y;
 98     double w;
 99     for(int i=1;i<=n;i++)
100         for(int j=1;j<=m;j++)
101         {
102             w=0;
103             if(i==1 || j==1 || i==n || j==m)
104             {
105                 if(i==1) w+=r*b[i][j];
106                 if(j==1) w+=r*c[i][j];
107                 if(i==n) w+=r*b[i+1][j];
108                 if(j==m) w+=r*c[i][j+1];
109             }
110             ins(S,idx(i,j),A[i][j]);
111             if(w) ins(idx(i,j),T,w);
112             for(int k=1;k<=2;k++)
113             {
114                 x=i+dx[k];y=j+dy[k];
115                 if(x<1 || y<1) continue;
116                 w=(k==1) ? r*b[i][j] : r*c[i][j];
117                 ins(idx(i,j),idx(x,y),w);
118                 ins(idx(x,y),idx(i,j),w);
119             }
120         }
121     // output();
122     double z=sum-dinic(S,T);
123     return (z>0);
124 }
125
126 int main()
127 {
128     // freopen("a.in","r",stdin);
129     freopen("game.in","r",stdin);
130     freopen("game.out","w",stdout);
131     scanf("%d%d",&n,&m);
132     double l,r,mid;sum=0;
133     for(int i=1;i<=n;i++)
134         for(int j=1;j<=m;j++)
135         {
136             scanf("%lf",&A[i][j]);
137             sum+=A[i][j];
138         }
139     for(int i=1;i<=n+1;i++)
140         for(int j=1;j<=m;j++)
141             scanf("%lf",&b[i][j]);
142     for(int i=1;i<=n+1;i++)
143         for(int j=1;j<=m+1;j++)
144             scanf("%lf",&c[i][j]);
145     // printf("%d\n",check(1.00));
146     l=0;r=sum;
147     while(myabs(l-r)>0.00001)
148     {
149         mid=(l+r)/2;
150         if(check(mid)) l=mid;
151         else r=mid;
152     }
153     printf("%.3lf\n",l);
154     return 0;
155 }


拯救Mary(save)

在经历了无数艰难险阻之后…

Ib和Garry发现Mary竟然不是真人!她只是美术馆的一幅画,在Ib和Garry得知真相后,Mary准备攻击Ib和Garry,Ib和Garry只能狠下心来将Mary的画烧了

然而Ib和Garry都很后悔,希望找到方法可以复活Mary,聪明的Ib又想到了办法,她将Mary的画的碎片收集了起来,每张碎片都是一棵n个节点的树,但是有一些节点是特殊节点,且特殊节点两两不相邻,如果找出有多少种不同(树可以任意转动)的碎片就可以复活Mary啦 (详见样例)

Input

第一行为一个正整数n

接下来n-1行,每行2个整数x,y表示一条树边

Output

输出一个数,表示有多少种不同的碎片

Sample Input

5

1 2

1 3

1 4

1 5

Sample Output

6

HINT

以下为6种情况

数据范围

20% n<=1000,树为一条链

100% n<=500000



这题我们找到树的中心,然后在树的重心上可以随便交换孩子而达到一样的样子的才是同构现象。

然后我们没有同构现象的可以直接乘,有同构现象的要用可重复排列:

n种球中选m个,方案数为c(m,n+m-1)。

每种方案看成一种球,假设有n种方案,m个同构子树,就是上式了。

然后如何判断子树同构?同hash。。

好吧我没有back回。

时间: 2024-10-23 09:16:30

【20161111】双十一特价模拟赛的相关文章

【BZOJ】【2741】【FOTILE模拟赛】L

可持久化Trie+分块 神题……Orz zyf & lyd 首先我们先将整个序列搞个前缀异或和,那么某一段的异或和,就变成了两个数的异或和,所以我们就将询问[某个区间中最大的区间异或和]改变成[某个区间中 max(两个数的异或和)] 要是我们能将所有[l,r]的答案都预处理出来,那么我们就可以O(1)回答了:然而我们并不能. 一个常见的折中方案:分块! 这里先假设我们实现了一个神奇的函数ask(l,r,x),可以帮我们求出[l,r]这个区间中的数,与x最大的异或值. 我们不预处理所有的左端点,我

10.30 NFLS-NOIP模拟赛 解题报告

总结:今天去了NOIP模拟赛,其实是几道USACO的经典的题目,第一题和最后一题都有思路,第二题是我一开始写了个spfa,写了一半中途发现应该是矩阵乘法,然后没做完,然后就没有然后了!第二题的暴力都没码QAQ 现在我来写解题报告了,有点饿了QAQ.. 第一题 题目 1: 架设电话线 [Jeffrey Wang, 2007] 最近,Farmer John的奶牛们越来越不满于牛棚里一塌糊涂的电话服务,于 是,她们要求FJ把那些老旧的电话线换成性能更好的新电话线.新的电话线架设 在已有的N(2 <=

bzoj 2741: 【FOTILE模拟赛】L 分塊+可持久化trie

2741: [FOTILE模拟赛]L Time Limit: 15 Sec  Memory Limit: 162 MBSubmit: 1116  Solved: 292[Submit][Status] Description FOTILE得到了一个长为N的序列A,为了拯救地球,他希望知道某些区间内的最大的连续XOR和. 即对于一个询问,你需要求出max(Ai xor Ai+1 xor Ai+2 ... xor Aj),其中l<=i<=j<=r. 为了体现在线操作,对于一个询问(x,y):

9.14 模拟赛

模拟赛第三弹~ T1 题意:给你一个数列,要求删掉任意一种整数,使得剩下的新数列中连续的相等的数最多 例如 2 7 3 7 7 3 3 7 7 5 7,删掉3以后剩的7有四个连续的,最多 思路:暴力枚举去掉哪个......这算是一道水题吧 代码丢了...... TAT T2 题意:有n本书,每本书有宽度和高度.现在你有无数个书架,每个书架的宽度为w,高度由最高的书决定 问在书本按顺序放的情况下,总的书架高度最小是多少 思路:dp,dp[i]表示做到第i本书时的最小高度和. 每次先找到能以编号j的

2014-9-9 NOIP模拟赛

东方幻想乡系列模拟赛Stage 1命题 Nettle审题 Barty ccy1991911 FlanS39 Wagner T2 高精除高精,从来没写过,不知道怎么写,我就用大数减小数ans次,果断超时. T4 Tarjan的板子题,好久没写,中间出现了一些小错误 ①是尽管有双向边,Tarjan函数中也不必排除双向边 ②Tarjan算法有时候不能一步完成,需要做最多n次,用循环解决 ③问题是关于这个题目的虽然输入n代表有n个点,但是下面的连边中有些点根本没出现过,所以设一个数组记录有效点. Pro

【题解】PAT团体程序设计天梯赛 - 模拟赛

由于本人愚笨,最后一题实在无力AC,于是只有前14题的题解Orz 总的来说,这次模拟赛的题目不算难,前14题基本上一眼就有思路,但是某些题写起来确实不太容易,编码复杂度有点高~ L1-1 N个数求和 设计一个分数类,重载加法运算符,注意要约分,用欧几里得算法求个最大公约数即可. 1 #include <cstdio> 2 3 long long abs(long long x) 4 { 5 return x < 0 ? -x : x; 6 } 7 8 long long gcd(long

20161027模拟赛解题报告

20161027模拟赛解题报告 By shenben T1 数学题 模拟即可. 注意开long long T2 技巧题 图片为本题第一张图.(无奈,图传不上来) 首先第一问图中的“Y 字形”的数量,这么简单,在此不细讲. 详见代码 O(n)累加一下就好了 主要说说第二问怎么搞 预处理 每个点分别与其他那些点相连 权值为第1,2,3大(若没有2,3大,就忽略).记录一下权值与对应的点的标号.目的是方便下面的判断. 枚举入度>=3的点,即点B(有多个) 再枚举点B相连的D点(不是点A,C). Ste

[GRYZ]寒假模拟赛

写在前面 这是首次广饶一中的OIERS自编自导,自出自做(zuo)的模拟赛. 鉴于水平气压比较低,机(wei)智(suo)的WMY/XYD/HYXZC就上网FQ下海找了不少水(fei)题,经过他们优(le)美(se)的文字加工后,有故事有题目有人物有奸情的模拟赛正式呈上. 我是正文 题目名 GRYZ娱乐时刻 GRYZ追击时刻 GRYZ就餐时刻 源文件 hyxzc.cpp/c/pas clikar.cpp/c/pas eat.cpp/c/pas 输入文件 hyxzc.in clikar.in ea

【简单思考】noip模拟赛 NTR酋长

NTR酋长 (ntr.pas/.c/.cpp) 黄巨大终于如愿以偿的进入了czy的后宫中……但是czy很生气……他要在黄巨大走到他面前的必经之路上放上几个NTR酋长来阻挡黄巨大. 众所周知,NTR酋长有一个技能是沟壑(F).它会在地图上产生一条长长的障碍物阻挡人前进.Czy打算在一个n*m的矩形(必经之路?)中放上NTR酋长.NTR酋长要一个一个放下去,而且每放一个都会向四角倾斜的方向放出无限长的沟壑,而已经被沟壑挡住的地方就不能再放NTR酋长了. 请注意:不会出现沟壑的路径挡住另一个沟壑的情况