51nod 1283 最小周长

一个矩形的面积为S,已知该矩形的边长都是整数,求所有满足条件的矩形中,周长的最小值。例如:S = 24,那么有{1 24} {2 12} {3 8} {4 6}这4种矩形,其中{4 6}的周长最小,为20。

Input

输入1个数S(1 <= S <= 10^9)。

Output

输出最小周长。

Input示例

24

Output示例

20水题。。
#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>

using namespace std;

typedef long long LL;
LL S,i,j,minn=0x7fffffff;
int main()
{
    cin>>S;
    for(i=1;i*i<=S;++i)
        if(S/i*i==S)
            minn=min(minn,2*i+2*S/i);
    cout<<minn;
    return 0;
}
				
时间: 2024-10-19 11:50:31

51nod 1283 最小周长的相关文章

51nod 1283 最小周长(水题)

1283 最小周长 题目来源: Codility 基准时间限制:1 秒 空间限制:131072 KB 分值: 5 难度:1级算法题 收藏 关注 取消关注 一个矩形的面积为S,已知该矩形的边长都是整数,求所有满足条件的矩形中,周长的最小值.例如:S = 24,那么有{1 24} {2 12} {3 8} {4 6}这4种矩形,其中{4 6}的周长最小,为20. Input 输入1个数S(1 <= S <= 10^9). Output 输出最小周长. Input示例 24 Output示例 20

1283 最小周长

1283 最小周长 题目来源: Codility 基准时间限制:1 秒 空间限制:131072 KB 分值: 5 难度:1级算法题 一个矩形的面积为S,已知该矩形的边长都是整数,求所有满足条件的矩形中,周长的最小值.例如:S = 24,那么有{1 24} {2 12} {3 8} {4 6}这4种矩形,其中{4 6}的周长最小,为20. Input 输入1个数S(1 <= S <= 10^9). Output 输出最小周长. Input示例 24 Output示例 20 题目链接:http:/

1283 最小周长(水题)

1283 最小周长 题目来源: Codility 一个矩形的面积为S,已知该矩形的边长都是整数,求所有满足条件的矩形中,周长的最小值.例如:S = 24,那么有{1 24} {2 12} {3 8} {4 6}这4种矩形,其中{4 6}的周长最小,为20. Input 输入1个数S(1 <= S <= 10^9). Output 输出最小周长. Input示例 24 Output示例 20 虽然是一道简单的水题,但是通过比较别人的代码和自己的代码,还是学到了一些知识 别人的代码 15ms 20

1090 3个数和为0 1091 线段的重叠 1182 完美字符串 1283 最小周长 1284 2 3 5 7的倍数

1090 3个数和为0 给出一个长度为N的无序数组,数组中的元素为整数,有正有负包括0,并互不相等.从中找出所有和 = 0的3个数的组合.如果没有这样的组合,输出No Solution.如果有多个,按照3个数中最小的数从小到大排序,如果最小的数相等则按照第二小的数排序. Input 第1行,1个数N,N为数组的长度(0 <= N <= 1000) 第2 - N + 1行:A[i](-10^9 <= A[i] <= 10^9) Output 如果没有符合条件的组合,输出No Solu

51nod 最小周长

1283 最小周长 题目来源: Codility 基准时间限制:1 秒 空间限制:131072 KB 分值: 5 难度:1级算法题  收藏  关注 一个矩形的面积为S,已知该矩形的边长都是整数,求所有满足条件的矩形中,周长的最小值.例如:S = 24,那么有{1 24} {2 12} {3 8} {4 6}这4种矩形,其中{4 6}的周长最小,为20. Input 输入1个数S(1 <= S <= 10^9). Output 输出最小周长. 一开始直接遍历超时,由数学定理,周长一定正方形面积最

51Nod - 1098 最小方差

51Nod - 1098 最小方差 若x1,x2,x3......xn的平均数为k. 则方差s^2 = 1/n * [(x1-k)^2+(x2-k)^2+.......+(xn-k)^2] . 方差即偏离平方的均值,称为标准差或均方差,方差描述波动程度. 给出M个数,从中找出N个数,使这N个数方差最小. Input 第1行:2个数M,N,(M > N, M <= 10000) 第2 - M + 1行:M个数的具体值(0 <= Xi <= 10000) Output 输出最小方差 *

最小周长

基准时间限制:1 秒 空间限制:131072 KB 分值: 5 难度:1级算法题 一个矩形的面积为S,已知该矩形的边长都是整数,求所有满足条件的矩形中,周长的最小值.例如:S = 24,那么有{1 24} {2 12} {3 8} {4 6}这4种矩形,其中{4 6}的周长最小,为20. Input 输入1个数S(1 <= S <= 10^9). Output 输出最小周长. Input示例 24 Output示例 20 最短的就是最中间的 附AC代码: 1 #include<iostr

51nod 1065 最小正子段和

题目链接:51nod 1065 最小正子段和 房教说用前缀和做,然后看了别人博客懂了后就感觉,这个真有意思... 1 #include<cstdio> 2 #include<cstring> 3 #include<algorithm> 4 using namespace std; 5 const int N = 50001; 6 const int inf = 0x3f3f3f3f; 7 pair<long long, int> sum[N]; 8 int

UVA 12386 Smallest Polygon n个点的任意多边形求最小周长 科学的暴力

题目链接: 题意: 给定n个点,用n个点组成的多边形中(可以是凹多边形,但n个点一定要全在多边形上) 在所有能由n个点构成的多边形中 求最小面积的多边形的周长 - 最小周长. 思路: 首先我们选择一个定点,则接下来的数进行一个排列,有(n-1)!个排列. 这个序列相邻两个数之间有一条线段. 判断多边形合法:任意两条线段不相交即可.n^2 剩下就是简单的更新答案了. 所以复杂度是 ( n-1 ) ! * n*n #include <cstdio> #include <cstring>