Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BST.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes p and q as the lowest node in T that has both p and q as descendants (where we allow a node to be a descendant of itself).”
Given binary search tree: root = [6,2,8,0,4,7,9,null,null,3,5]
Example 1:
Input: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 8 Output: 6 Explanation: The LCA of nodes2
and8
is6
.
Example 2:
Input: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 4 Output: 2 Explanation: The LCA of nodes2
and4
is2
, since a node can be a descendant of itself according to the LCA definition.
Note:
- All of the nodes‘ values will be unique.
- p and q are different and both values will exist in the BST.
# Definition for a binary tree node. # class TreeNode(object): # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution(object): def lowestCommonAncestor(self, root, p, q): """ :type root: TreeNode :type p: TreeNode :type q: TreeNode :rtype: TreeNode """ p_val=p.val q_val=q.val if p_val<root.val and q_val<root.val: return self.lowestCommonAncestor(root.left,p,q) elif p_val>root.val and q_val>root.val: return self.lowestCommonAncestor(root.right,p,q) else: return root
原文地址:https://www.cnblogs.com/chiyeung/p/10180831.html
时间: 2024-10-28 03:19:08