皮尔逊相关系数(Pearson Correlation Coefficient, Pearson's r)

Pearson‘s r,称为皮尔逊相关系数(Pearson correlation coefficient),用来反映两个随机变量之间的线性相关程度。

用于总体(population)时记作ρ (rho)(population correlation coefficient):

给定两个随机变量X,Y,ρ的公式为: 

其中:   是协方差

是X的标准差

是Y的标准差

用于样本(sample)时记作rsample correlation coefficient):

给定两个随机变量x,y,r的公式为:

其中:  是样本数量

 是变量x,y对应的i点观测值

  是x样本平均数,是y样本平均数

r的取值在-1与1之间。取值为1时,表示两个随机变量之间呈完全正相关关系;取值为-1时,表示两个随机变量之间呈完全负相关关系;取值为0时,表示两个随机变量之间线性无关。

(注:我们用样本相关系数r作为总体相关系数ρ的估计值,要判断r值是不是由抽样误差或偶然因素导致的,需要进行假设检验。)

那么皮尔逊相关系数是怎么得来的呢?(参考:https://blog.csdn.net/ichuzhen/article/details/79535226

要理解皮尔逊相关系数,首先要理解协方差(Covariance)

。协方差可以反映两个随机变量之间的关系,如果一个变量跟随着另一个变量一起变大或者变小,那么这两个变量的协方差就是正值,就表示这两个变量之间呈正相关关系,反之相反。协方差的公式如下:

如果协方差的值是个很大的正数,我们可以得到两个可能的结论:

(1) 两个变量之间呈很强的正相关性

(2) 两个变量之间并没有很强的正相关性,协方差的值很大是因为X或Y的标准差很大

那么到底哪个结论正确呢?只要把X和Y变量的标准差,从协方差中剔除不就知道了吗?协方差能告诉我们两个随机变量之间的关系,但是却没法衡量变量之间相关性的强弱。因此,为了更好地度量两个随机变量之间的相关程度,引入了皮尔逊相关系数。可以看到,皮尔逊相关系数就是用协方差除以两个变量的标准差得到的。

皮尔逊相关系数(Pearson Correlation Coefficient, Pearson's r)

原文地址:https://www.cnblogs.com/HuZihu/p/10183502.html

时间: 2024-11-05 20:25:14

皮尔逊相关系数(Pearson Correlation Coefficient, Pearson's r)的相关文章

皮尔逊相关系数与余弦相似度(Pearson Correlation Coefficient & Cosine Similarity)

之前<皮尔逊相关系数(Pearson Correlation Coefficient, Pearson's r)>一文介绍了皮尔逊相关系数.那么,皮尔逊相关系数(Pearson Correlation Coefficient)和余弦相似度(Cosine Similarity)之间有什么关联呢? 首先,我们来看一下什么是余弦相似度.说到余弦相似度,就要用到余弦定理(Law of Cosine). 假设两个向量和之间的夹角为.,向量的长度分别是和,对应的边长为向量减去向量的长度,也就是. 根据余弦

Spearman&#39;s rank correlation coefficient 和 Pearson correlation coefficient详细

In statistics, Spearman's rank correlation coefficient or Spearman's rho, named after Charles Spearman and often denoted by the Greek letter (rho) or as , is a nonparametric measure of statistical dependence between two variables. It assesses how wel

机器学习笔记——皮尔逊相关系数

在学到相关性度量的时候,有一个系数用来度量相似性(距离),这个系数叫做皮尔逊系数,事实上在统计学的时候就已经学过了,仅仅是当时不知道还能用到机器学习中来,这更加让我认为机器学习离不开统计学了. 皮尔逊相关系数--Pearson correlation coefficient,用于度量两个变量之间的相关性,其值介于-1与1之间,值越大则说明相关性越强. 两个变量之间的皮尔逊相关系数定义为两个变量之间的协方差和标准差的商: 因为μX = E(X), σX2 = E[(X ? E(X))2] = E(

皮尔逊相关系数理解

皮尔逊相关系数理解有两个角度 其一, 按照高中数学水平来理解, 它很简单, 可以看做将两组数据首先做Z分数处理之后, 然后两组数据的乘积和除以样本数 Z分数一般代表正态分布中, 数据偏离中心点的距离.等于变量减掉平均数再除以标准差.(就是高考的标准分类似的处理) 标准差则等于变量减掉平均数的平方和,再除以样本数,最后再开方. 所以, 根据这个最朴素的理解,我们可以将公式依次精简为: 其二, 按照大学的线性数学水平来理解, 它比较复杂一点,可以看做是两组数据的向量夹角的余弦. 皮尔逊相关的约束条件

皮尔逊相关系数(Pearson Collelation coefficient)与余弦相似性的关系

皮尔逊相关系数 维基百科定义:两个变量之间的皮尔逊相关系数定义为两个变量之间的协方差和标准差的商 余弦相似性 皮尔逊相关系数与余弦相似性的关系 皮尔逊相关系数就是减去平均值(中心化)后做余弦相似性

Pearson product-moment correlation coefficient in java(java的简单相关系数算法)

一.什么是Pearson product-moment correlation coefficient(简单相关系数)? 相关表和相关图可反映两个变量之间的相互关系及其相关方向,但无法确切地表明两个变量之间相关的程度.于是,著名统计学家卡尔·皮尔逊设计了统计指标--相关系数(Correlation coefficient).相关系数是用以反映变量之间相关关系密切程度的统计指标.相关系数是按积差方法计算,同样以两变量与各自平均值的离差为基础,通过两个离差相乘来反映两变量之间相关程度:着重研究线性的

[Statistics] Comparison of Three Correlation Coefficients: Pearson, Kendall, Spearman

There are three popular metrics to measure the correlation between two random variables: Pearson's correlation coefficient, Kendall's tau and Spearman's rank correlation coefficient. In this article, I will make a detailed comparison among the three

皮尔逊相关系数

皮尔逊相关系数是比欧几里德距离更加复杂的可以判断人们兴趣的相似度的一种方法.该相关系数是判断两组数据与某一直线拟合程序的一种试题.它在数据不是很规范的时候,会倾向于给出更好的结果. 如图,Mick Lasalle为<<Superman>>评了3分,而Gene Seyour则评了5分,所以该影片被定位中图中的(3,5)处.在图中还可以看到一条直线.其绘制原则是尽可能地靠近图上的所有坐标点,被称为最佳拟合线.如果两位评论者对所有影片的评分情况都相同,那么这条直线将成为对角线,并且会与图

皮尔逊相关系数和余弦相似性的关系

有两篇回答,我觉得都是正确的,从不同的方向来看的. 作者:陈小龙链接:https://www.zhihu.com/question/19734616/answer/174098489来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 先说结论: 皮尔逊相关系数是余弦相似度在维度值缺失情况下的一种改进, 皮尔逊相关系数是余弦相似度在维度值缺失情况下的一种改进, 皮尔逊相关系数是余弦相似度在维度值缺失情况下的一种改进. 楼主如果高中正常毕业, 参加过高考, 那么肯定会这么