mahout基于Hadoop的CF代码分析(转)

来自:http://www.codesky.net/article/201206/171862.html

mahout的taste框架是协同过滤算法的实现。它支持DataModel,如文件、数据库、NoSQL存储等,也支持Hadoop的MapReduce。这里主要分析的基于MR的实现。

基于MR的CF实现主要流程就在 org.apache.mahout.cf.taste.Hadoop.item.RecommenderJob类中(注意mahout有两个 RecommendJob,要看清楚是哪一个包)。这 个类的run方法就包含了所有的步骤。从上到下,完整的其实有10步(中间计算item相似度其实拆分成了3个job,我们也当做是一个phase吧), 也就是说,如果指定了所有的必要参数,运行一次item-based CF算法,会执行12个JOB,当然有的步骤是可以忽略的,下面会讲。以下就是详细的每一步骤的分析:

phase1: itemIDIndex

这步主要是将itemId转成一个int。这里设计上其实有点小问题,如果item的数量非常多,比如超过int的最大值,那就有可能会出现重合了。所以用long其实更为合适。

input:用户评分文件(这也是我们最原始的输入了),格式一般为:userId t itemId t score。注意输入必须是textfile的。可能是为了方便测试吧,mahout的很多包默认输出都是textfile格式的。

map:(index, itemId)

reduce: (index, itemId)

phase2: toUserVector

input:用户评分文件

param: --userBooleanData如果这个参数为true,则会忽略评分列,对于买或不买这类数据有时需要指这定这个值。

map: (userId, itemId,pref)

reduce: 以用户为key,输出成向量形式è (userId, VectorWritable<itemId, pref>)

phase3: countUser,计算用户数

map: (userId)

reduce: 输出总用户数count

phase4: maybePruneAndTranspose

input: phase2的输出:userVector

param: --maxCooccurrences

map: (userId,Vector<itemId, pref>) è(itemId,DistributedRowMatrix<userId,pref>),注意如果指定了—maxCooccurrences参数,这里会有裁剪,www.codesky.net 每个userId最多对maxCooccurrences的itemId打分

这里的DistributedRowMatrix,分布式行矩阵:行:itemId, 列:userId

reduce: (itemId, VectorWritable<userId,pref>)

phase5: RowSimilarityJob

这一步比较关键,计算item相似度,它拆分成了三个JOB。

param: --numberOfColumns, --similarityClassname,--maxSimilaritiesPerRow(默认:100)

job1:weight

input:phase4的输出

map: (itemId, VectorWritable <userId, pref>) ==>(userId, WeightedOccurrence<itemId, pref, weight>)

这里的weight,对于欧氏向量距离,或者Pearson距离等,均为Double.NaN,即无效。在LoglikelihoodVectorSimilarity中有用到weight的值。

reduce:(userId, WeightedOccurrenceArray<itemId, pref, weight>)

job2:pairwise similarity *item相似度计算*

map: 对同一用户的所有item-rating,输出两两item之间的关系 ==>(WeightedRowPair<itemA, itemB, weightA, weightB>, coocurrence<userId,valueA, valueB>) (同上,这里的权重weightA,B对于欧氏距离等可以忽略)

reduce: 在这端,以<itemA,itemB>为key聚合了来自不同map的所有用户的 打分,最后输出itemA和B的对称相似度(即以itemA为key或以itemB为key)==> (SimilarityMatrixEntryKey<itemA,similarity>, MatrixEntryWritable<WeightedRowPair<itemA, itemB,weightA, weightB>>) , (SimilarityMatrixEntryKey<itemB,similarity>, MatrixEntryWritable<WeightedRowPair<itemB, itemA,weightB, weightA>>)

job3:entries2vectors *汇总item的相似items*

      param: --maxSimilaritiesPerRow

map: (itemA, itemB, similarity) & (itemB,itemA, similarity) 这里在group的时候按相似度降序做了排序,如果有--maxSimilaritiesPerRow参数,则会做裁剪。

reduce: (itemA, VectorWritable <item,similarity>)

至此,item相似度计算完毕。

phase6: prePartialMultiply1 

input: phase5的最后输出(即item相似度)

map: 直接输出item对应的相似items,这里用VectorOrPrefWritable做了封装,表明有可能是相似度向量,也有可能是对item的打分,并且对item为自己的,将相似度设为Double.NaN,以过滤自身。è(itemId,VectorOrPrefWritable<item, similarity>)

reduce: IdentityReducer

phase7: prePartialMultiply2

input: phase2的输出userVectors

map: 输出:(itemId, VectorOrPrefWritable<userId, pref>)

这里默认考虑用户对10个item的评分,可以通过maxPrefsPerUserConsidered参数调整。

如果指定了usersFile,则在setup时会把所有的userId读入内存,用于过滤。如果map输入数据的userID不在usersFile中,则会被忽略。注意,这是mahout的设计bug,对于比较大的数据集,很有可能造成OOM(事实上在我的测试程序中已经出现OOM了…),这种bug下面还会出现。输出的是用户的评分,同phase6的VectorOrPrefWritable的封装。

reduce: IdentityReducer

phase8: partialMultiply

input: 6和7的输出:prePartialMultiply1, prePartialMultiply2

map: Identity。由于6和7的输出的key均为itemId,因而在reduce端同一item的相似item以及对应的用户评分会聚合到一起。

reduce:(itemId, VectorAndPrefsWritable<similarityMatrix, List<userId>,List<pref>>) 没做特殊处理,直接合在一起,输出相似度矩阵,所有的userId及对item的打分。

phase9: itemFiltering 

将过滤文件输出成<userId, itemId>。如果指定了--filterFile参数,则在最后的聚合推荐中会过滤userId对应的items。这一步在实际中多数是可以忽略的,只要不指定这个参数即可。

phase10: aggregateAndRecommend

map: 对每个用户,输出对当前item的评分,以及与当前item的所有相似 itemsè(userId, PrefAndSimilarityColumnWritable<pref,vector<item, similarity>>)

reduce: 聚合了这个用户所有的评分历史,以及相似items,计算对该用户的推荐结果 è (userId, List<itemId>)。

注意在reduce的setup中,会将phase1产生的所有itemId到index的映射读入内存,这里只要Item数据集稍大,就会OOM。这是比较严重的设计bug。

事实上,如果item是正规的整数,而不是guid之类的,phase1和这一步的读入内存是完全可以略掉的。这样的话 就完全可以在企业级的数据集上使用(我的测试数据集是15亿+的user-item-rating,1.5亿+的用户,在最后这一步挂掉了,前面所有 phase都能跑成功)。

至此,已经形成了推荐结果,CF完成。

以上的所有步骤中,phase5的计算item相似度是最慢的(这个其实也很直觉)。

时间: 2025-01-04 01:36:36

mahout基于Hadoop的CF代码分析(转)的相关文章

打造基于hadoop的网站日志分析系统(5)之spark在日志分析系统里的简单应用

1.下载spark和运行 wget http://apache.fayea.com/apache-mirror/spark/spark-1.0.0/spark-1.0.0-bin-hadoop2.tgz 我这里下载的是1.0.0版,由于我们只是测试spark的用法所以不需要配置spark集群,只需把下好的文件解压,进入bin/文件夹. spark支持scala,java和python. scala和java输入命令:./spark-shell python 输入命令 ./pyspark 进入控制

基于hadoop的社交网络的分析

昨天终于hadoop的项目验收完成了,终于可以松一口气了,总体还是比较满意的. 首先说一下项目流程,用mapreduce对数据进行预处理,然后用mahout中的聚类算法(kmeans)对数据进行处理,最后用peoplerank对数据进行处理. 根据老师交给我们的数据,包括Google+和Twitter的部分社交网络数据.以下是两个数据下载的链接 http://snap.stanford.edu/data/egonets-Gplus.html(Google+) http://snap.stanfo

hadoop核心逻辑shuffle代码分析-map端

首先要推荐一下:http://www.alidata.org/archives/1470 阿里的大牛在上面的文章中比较详细的介绍了shuffle过程中mapper和reduce的每个过程,强烈推荐先读一下. 不过,上文没有写明一些实现的细节,比如:spill的过程,mapper生成文件的 partition是怎么做的等等,相信有很多人跟我一样在看了上面的文章后还是有很多疑问,我也是带着疑问花了很久的看了cdh4.1.0版本 shuffle的逻辑,整理成本文,为以后回顾所用. 首先用一张图展示下m

基于Hadoop技术实现的离线电商分析平台(Flume、Hadoop、Hbase、SpringMVC、highcharts)视频教程(项目实战)

38套大数据,云计算,架构,数据分析师,Hadoop,Spark,Storm,Kafka,人工智能,机器学习,深度学习,项目实战视频教程 视频课程包含: 38套大数据和人工智能精品高级课包含:大数据,云计算,架构,数据挖掘实战,实时推荐系统实战,电视收视率项目实战,实时流统计项目实战,离线电商分析项目实战,Spark大型项目实战用户分析,智能客户系统项目实战,Linux基础,Hadoop,Spark,Storm,Docker,Mapreduce,Kafka,Flume,OpenStack,Hiv

mahout demo——本质上是基于Hadoop的分步式算法实现,比如多节点的数据合并,数据排序,网路通信的效率,节点宕机重算,数据分步式存储

摘自:http://blog.fens.me/mahout-recommendation-api/ 测试程序:RecommenderTest.java 测试数据集:item.csv 1,101,5.0 1,102,3.0 1,103,2.5 2,101,2.0 2,102,2.5 2,103,5.0 2,104,2.0 3,101,2.5 3,104,4.0 3,105,4.5 测试程序:org.conan.mymahout.recommendation.job.RecommenderTest.

基于OAuth2.0协议的QQ第三方授权登录iOS代码分析

简要说明: 授权登录已经成为注册方式里的主流,目前授权登录方式主要SSO跳转授权登录和OAuth2.0两种,前者好处无需用户再次输入密码就可以直接授权成功,但前提是必须用户手机端安装了该软件,比如QQ,后者的优势就是是否安装无关紧要,是一个HTML的页面呈现,麻烦就在于要输入用户名和密码,这就非常不爽了,但是有时候偏偏必须这么做,理由嘛,自行想想就好,接下来我们就看看如果利用OAuth2.0的方式来做QQ授权登录,如果想了解QQ的SSO授权登录,可以看我(博客主页)之前的博客:基于第三方QQ授权

开源项目kcws代码分析--基于深度学习的分词技术

http://blog.csdn.net/pirage/article/details/53424544 分词原理 本小节内容参考待字闺中的两篇博文: 97.5%准确率的深度学习中文分词(字嵌入+Bi-LSTM+CRF) 如何深度理解Koth的深度分词? 简单的说,kcws的分词原理就是: 对语料进行处理,使用word2vec对语料的字进行嵌入,每个字特征为50维. 得到字嵌入后,用字嵌入特征喂给双向LSTM, 对输出的隐层加一个线性层,然后加一个CRF就得到本文实现的模型. 于最优化方法,文本

(转)基于FFPMEG2.0版本的ffplay代码分析

ref:http://zzhhui.blog.sohu.com/304810230.html 背景说明 FFmpeg是一个开源,免费,跨平台的视频和音频流方案,它提供了一套完整的录制.转换以及流化音视频的解决方案.而ffplay是有ffmpeg官方提供的一个基于ffmpeg的简单播放器.学习ffplay对于播放器流程.ffmpeg的调用等等是一个非常好的例子.本文就是对ffplay的一个基本的流程剖析,很多细节内容还需要继续钻研. 注:本文师基于ffmpeg-2.0版本进行分析,具体代码行还请对

基于mykernel的一个简单的时间片轮转多道程序内核代码分析

学号023作品 本实验资源来源: https://github.com/mengning/linuxkernel/ 一.观察简易操作系统 此处使用实验楼的虚拟机打开终端 cd LinuxKernel/linux-3.9.4 rm -rf mykernel patch -p1 < ../mykernel_for_linux3.9.4sc.patch make allnoconfig make #编译内核请耐心等待 qemu -kernel arch/x86/boot/bzImage 在QEMU窗口