容器内应用日志收集方案

容器化应用日志收集挑战

应用日志的收集、分析和监控是日常运维工作重要的部分,妥善地处理应用日志收集往往是应用容器化重要的一个课题。

Docker处理日志的方法是通过docker engine捕捉每一个容器进程的STDOUT和STDERR,通过为contrainer制定不同log driver 来实现容器日志的收集,缺省json-file log driver是将容器的STDOUT/STDERR 输出保存在磁盘上,然后用户就能使用docker logs <container>来进行查询。

在部署一个传统的应用的时候,应用程序记录日志的方式通常记录到文件里, 一般(但不一定)会记录到/var/log目录下。应用容器化后,不同于以往将所有日志放在主机系统的统一位置,日志分散在很多不同容器的相互隔离的环境中。

如何收集应用写在容器内日志记录,有以下挑战:

1) 资源消耗

如果在每个容器运行一个日志收集进程, 比如logstatsh/fluentd 这类的日志工具,在主机容器密度高的时候,logstatsh/fluentd这类日志采集工具会消耗大量的系统资源。上面这种方法是最简单直观的,也是最消耗资源的。

2) 应用侵入

一些传统应用,特别是legacy 系统,写日志机制往往是没法配置和更改的,包括应用日志的格式,存放地址等等。日志采集机制,要尽量避免要求修改应用。

3) 日志来源识别

采用统一应用日志收集方案,日志分散在很多不同容器的相互隔离的环境中,需要解决日志的来源识别问题。

日志来源识别的功能借助了rancher平台为container_name的命名的规则特性,可以做到即使一个容器在运行过程中被调度到另外一台主机,也可以识别日志来源。

容器化应用日志收集方案

下面是我们设计的一个低资源资源消耗、无应用侵入、可以清楚识别日志来源的统一日志收集方案,该方案已经在睿云智合的客户有成功实施案例。

在该方案中,会在每个host 部署一个wise2c-logger,wise2C会listen docker engine的event,当有新容器创建和销毁时,会去判断是否有和日志相关的local volume 被创建或者销毁了,根据lables,wise2c-logger 会动态配置logstatsh的input、filter 和output,实现应用日志的收集和分发。

1) 应用如何配置

应用容器化时候,需要在为应用容器挂载一个专门写有日志的volume,为了区别该volume 和容器其它数据volume,我们把该volume 定义在容器中,通过volume_from 指令share 给应用容器,下面是一个例子:demo应用的docker-compose file

web-data 容器使用一个local volume,mount到/var/log目录(也可以是其它目录),在web-data中定义了几个标签,  io.wise2c.logtype说明这个容器中包含了日志目录,标签里面的值elasticsearch、kafka可以用于指明log的output或者过滤条件等。

那么我们现在来看下wiselogger大致的工作流程:

监听新的日志容器->获取日志容器的type和本地目录->生成新的logstash配置:

1)wise2c-looger 侦听docker events 事件, 检查是否有一个日志容器创建或者被销毁;

2)当日志容器被创建后(通过container label 判断),  inspect 容器的volume 在主机的path;

3)重新配置wise2c-logger 内置的logstatsh 的配置文件,设置新的input, filter 和output 规则。

这里是把wise2c-logger在rancher平台上做成catalog需要的docker-compose.yml的截图,大家可以配合上面的流程描述一起看一下。

优化

目前我们还在对Wise2C-logger 作进一步的优化:

1)收集容器的STDOUT/STDERR日志

特别是对default 使用json-file driver的容器,通过扫描容器主机的json-file 目录,实现容器STDIN/STDERR日志的收集。

2)更多的内置日志收集方案

目前内置缺省使用logstatsh 作日志的收集,和过滤和一些简单的转码逻辑。未来wise2C-logger  可以支持一些更轻量级的日志收集方案,比如fluentd、filebeat等。

Q & A

Q:有没有做过性能测试?我这边模块的日志吞吐量比较大。比如在多少量级的日志输出量基础上,主要为logger模块预留多少系统资源,保证其正常稳定工作?

A:没有做过很强的压力,但是我们现在正常使用倒没碰上过性能上的瓶颈。我们现在没有对logger做资源限制,但是能占用300~400M内存,因为有logstash的原因。

Q:「生成日志容器」是指每个应用容器要对应一个日志容器?这样资源消耗不会更大吗?k8s那种日志采集性能消耗会比这样每个应用容器对应一个日志容器高么?

A:是指每个应用容器对应一个日志容器。虽然每个应用有一个日志容器,但是,日志容器是start once的,不会占用运行时资源。

Q:你说的start once是什么意思?我说占资源是大量日志来的时候,那么多日志容器要消耗大量io的吧,CPU使用率会上升,不会影响应用容器使用CPU么?

A:不会,日志容器只生成一下,不会持续运行。

Q:怎么去监听local volume?

A:可以监听文件目录,也可以定时请求docker daemon。

Q:直接用syslog driver,能做到对应用无侵入么?

A:启动容器的时候 注明使用Syslog driver的参数即可,这样几乎没有额外资源占用。

Q:这种方案是不是要保证应用容器日志要输出到/var/log下啊?

A:不是,可以随意定义,logstah可以抓syslog。

Q:syslog driver能收集容器内的日志文件么?容器内不同流向的日志能区分么?

A:容器内应用的本地日志syslog可以收集,分流同样可以完成,但是容器内的本地日志这个我个人觉得跟容器环境下的应用无本地化、无状态化相悖吧。

Q:最后你说到,重新配置logstash中配置文件,看上去感觉你又是通过wiselog这个容器去采集所有日志的?只不过是动态配置logstash里面参数。

A:是的,现在收集工作是logstash来完成的,单纯的文件收集,可选的方案还挺多的,也没有必要再造轮子了。

Q:那这个方案其实有个疑问,为什么不学k8s那种,直接固定那目录,通过正则表达式去采集日志文件,而要动态这么做?有什么好处吗?目前我感觉这两套方案几乎一样。

A:为了减少对应用的侵入。因为很多用户的现有系统不能再修改了,这样做也是为了减少用户现有程序的修改,为了最重要的“兼容现有”。

Q:除了kibana还有没别的可视化方案?

A:针对es来说,还没有别的更好的方案。

Q:如果是挂载log目录,logstash就可以去宿主机收集了,还需要别的插件做什么?

A:通过容器可以识别出来这个应用的业务上的逻辑,可以拿到service名称。

Q:有的应用输出的log名都是一样的,不会有冲突吗,比如我启动2个容器在一个宿主机上,都往xx.log里写入会有问题。

A:不会,给每一个应用容器配一个日志卷容器就可以解决这个问题。这个问题也是我们出方案时一个棘手的问题。所以这个方案的一个好处就是,每一个应用的都可以随意设置日志目录,不用考虑和别的应用冲突,也不会和同宿主机同一应用冲突。

Q:上次听别人说全部把日志扔到标准输出里,不知道靠谱不?

A:有人报过这种处理方式,日志量大时,docker daemon会崩溃。

时间: 2024-12-28 23:38:20

容器内应用日志收集方案的相关文章

Tomcat容器日志收集方案fluentd+elasticsearch+kilbana

在上一遍博文中我们介绍了Nginx容器访问日志收集的方案,我们使用EFK的架构来完成对容器日志内应用日志的收集,如果不知道什么是EFK架构,那么请访问以下链接获取相关的帮助 Nginx容器日志收集方案fluentd+elasticsearch+kilbana 如果你已经认真阅读了上面的链接,并撑握了其用法,那么再来看本博文(针对于初学者),下面假设我们已经搭建好了上一讲所需要的基础环境,我们接下来就直接开始步入正题. 在步入正题之前我们首先需要确认我们需要完成的目标与效果,同样我们在启动Tomc

Nginx容器日志收集方案fluentd+elasticsearch+kilbana

容器技术在发展到今天已经是相当的成熟,但容器不同于虚拟机,我们在使用容器的同时也有很多相关的技术问题需要解决,比如:容器性能监控,数据持久化,日志监控与分析等.我们不能像平时使用虚拟机一样来管理容器,本文我将给大家带来fluentd+elasticsearch+kilbana容器日志收集方案. 我们将通过容器的fluentd日志驱动将系统内产生的日志发送给fluentd服务端,再过来fluentd服务端处理所有容器发送过来的日志,再转发到elasticsearch,最后通过kilbana来展示和

腾讯云容器服务大容量日志的处理记录

一.项目背景 1.1 项目痛点 在目前小程序为主的大背景下,有客户大部分业务在腾讯云,使用的大部分为容器服务,在大规模的使用容器下,需要对容器内业务的日志采集及分析,在腾讯云对应容器服务的日志提供了两种消费方式:Kafka.日志服务CLS.但是对应业务线众多,在腾讯云容器服务只能指定十条日志收集规则,完全满足不了大规模日志收集场景,客户已经指定分业务两种消费方式均使用了起来,Kafka&日志服务,但是在Ckafka查看日志发现最高每分钟20W条消息,尽管已经最大程度的提升了消费端的能力(消费端使

轻量级日志收集技术方案

1.     传统架构 1.1. Rsync方式 说明: 在生产环境上部署rsync传输脚本并设置定时,按天或按小时将日志传输到日志收集服务器 1) 优点 对生产服务器和日志收集服务器造成的压力较小 数据较精确,且可以比较方便的重复运行 2) 缺点 不能实时或者方便的得到想要的统计数据 不方便实施分布式 需要对每种日志正价同步脚本和设置定时,维护起来比较麻烦 Flume方式 说明: Flume是一个分布式.可靠.和高可用的海量日志聚合的系统,支持在系统中定制各类数据发送方. 采用了分层架构:分别

容器内init进程方案

进程标识符 (PID) 是Linux 内核为每个进程提供的唯一标识符.熟悉docker的同学都知道, 所有的进程 PID都属于某一个PID namespaces, 也就是说容器具有一组自己的 PID,这些 PID 映射到主机系统上的 PID.启动Linux内核时启动的第一个进程具有 PID 1,一般来说该进程就是 init 进程,例如 systemd 或 SysV.同样,在容器中启动的第一个进程也会获得该PID namespaces内的 PID 1.Docker 和 Kubernetes 使用信

一共81个,开源大数据处理工具汇总(下),包括日志收集系统/集群管理/RPC等

作者:大数据女神-诺蓝(微信公号:dashujunvshen).本文是36大数据专稿,转载必须标明来源36大数据. 接上一部分:一共81个,开源大数据处理工具汇总(上),第二部分主要收集整理的内容主要有日志收集系统.消息系统.分布式服务.集群管理.RPC.基础设施.搜索引擎.Iaas和监控管理等大数据开源工具. 日志收集系统 一.Facebook Scribe 贡献者:Facebook 简介:Scribe是Facebook开源的日志收集系统,在Facebook内部已经得到大量的应用.它能够从各种

[转载] 一共81个,开源大数据处理工具汇总(下),包括日志收集系统/集群管理/RPC等

原文: http://www.36dsj.com/archives/25042 接上一部分:一共81个,开源大数据处理工具汇总(上),第二部分主要收集整理的内容主要有日志收集系统.消息系统.分布式服务.集群管理.RPC.基础设施.搜索引擎.Iaas和监控管理等大数据开源工具. 日志收集系统 一.Facebook Scribe 贡献者:Facebook 简介:Scribe是Facebook开源的日志收集系统,在Facebook内部已经得到大量的应用.它能够从各种日志源上收集日志,存储到一个中央存储

k8s集群之日志收集EFK架构

参考文档 http://tonybai.com/2017/03/03/implement-kubernetes-cluster-level-logging-with-fluentd-and-elasticsearch-stack/ https://github.com/kubernetes/kubernetes/tree/master/cluster/addons/fluentd-elasticsearch https://t.goodrain.com/t/k8s/242 http://logz

flume分布式日志收集测试

官方参考文档 https://flume.apache.org/FlumeUserGuide.html#file-channel Flume NG是一个分布式.可靠.可用的系统,它能够将不同数据源的海量日志数据进行高效收集.聚合.移动,最后存储到一个中心化数据存储系统中.由原来的Flume OG到现在的Flume NG,进行了架构重构,并且现在NG版本完全不兼容原来的OG版本.经过架构重构后,Flume NG更像是一个轻量的小工具,非常简单,容易适应各种方式日志收集,并支持failover和负载