数字语音信号处理学习笔记——语音信号的短时频域分析(2)

4.3 滤波器的解释

      1.短时傅里叶变换的滤波器实现形式一

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvam9qb3poYW5nanU=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" >

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvam9qb3poYW5nanU=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" >

2.短时傅里叶变换的滤波器实现形式二

令:

则:

4.4 短时谱的时域及频域採样率

短时傅里叶变换是一维信号的二维表示。即

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvam9qb3poYW5nanU=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" >同一时候是时间n以及角频率w的函数。怎样由来恢复

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvam9qb3poYW5nanU=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" style="font-size:18px">,首先遇到的就是时域採样率和频域採样率的问题。

1.时域採样率

在时间域内要求的採样率为。B是窗的带宽,N窗体序列的长度,Fs是信号x(n)的採样率。

2.频域採样率

为了从中恢复

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvam9qb3poYW5nanU=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" style="font-size:18px">必需要用下述一组频率值来採样

3.总採样率

我们能确定每秒内使原信号得到非混叠表示所必须的

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvam9qb3poYW5nanU=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" style="font-size:18px">的採样总数。在时间域内的最小採样率为2B,当中B是窗的频带带宽。而频率域内的最小採样为N。即为窗宽。因此,

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvam9qb3poYW5nanU=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" style="font-size:18px">的总採样率(SR)等于

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvam9qb3poYW5nanU=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" >

在大多数实际窗中,B能够表示为Fs/N的倍数。即:

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvam9qb3poYW5nanU=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" >

当中,C是比例常数,得:

式中。SR/Fs为与一般採样频率相比而得到的“过速率採样比”。汉明窗2C=4,矩形窗2C=2。

时间: 2024-11-07 18:25:52

数字语音信号处理学习笔记——语音信号的短时频域分析(2)的相关文章

数字语音信号处理学习笔记——语音信号的同态处理(2)

5.4 复倒谱和倒谱 定义       设信号x(n)的z变换为X(z) = z[x(n)],其对数为: (1) 那么的逆z变换可写成: (2) 取(1)式则有 (3) 于是式子(2)则可以写成       (4) 则式子(4)即为信号x(n)的复倒谱的定义.因为一般为复数,故称为复倒谱.如果对的绝对值取对数,得 (5) 则为实数,由此求出的倒频谱c(n)为实倒谱,简称为倒谱,即 (6) 在(3)式中,实部是可以取唯一值的,但对于虚部,会引起唯一性问题,因此要求相角为w的连续奇函数. 性质: 为

数字语音信号处理学习笔记——语音信号的数字模型(3)

2.4 语音的感知       2.4.1 几个概念       语音的听觉感知是一个复杂的人脑-心理过程.对听觉感知的研究还很不成熟.听觉感知的试验主要还在测试响度.音高和掩蔽效应等.人耳听觉界限的范围大约为20Hz~20kHz.在频率范围低端,感觉声音变成低频脉冲串,在高端感觉声音减小直至完全听不到一点儿声响.语音感知的强度范围是0~130dB声压级,声音强度太高,感到难以忍受,强度太低则感到寂静无声. 1.响度 这是频率和强度级的函数.通常用响度(单位为宋)和响度级(单位为方)来表示. 人

数字语音信号处理学习笔记——语音信号的短时时域分析(1)

3.1 概述 语音信号是一种非平稳的时变信号,它携带着各种信息.在语音编码.语音合成.语音识别和语音增强等语音处理中都需要提取语音中包含的各种信息.一般而言语音处理的目的有两种:一种是对语音信号进行分析,提取特征参数,用于后续处理:另一种是加工语音信号,例如在语音增强中对含噪语音进行背景噪声抑制,以获得相对"干净"的语音:在语音合成方中需要对分段语音进行拼接平滑,获得主观音质较高的合成语音,这方面的应用同样是建立在分析并提取语音信号信息的基础上的.总之,语音信号分析的目的就在于方便有效

数字语音信号处理学习笔记——绪论(2)

1.2.2 语音编码 语音编码的目的是在保证一定语音质量的前提下,尽可能降低编码比特率,以节省频率资源. 语音编码技术的鼻祖: 研究开始于1939年军事保密通信的需要,贝尔电话实验室的Homer Dudley提出并实现了在低频带宽电话电报电缆上传输语音信号的通道声码器. 20世纪70年代:国际电联(ITU-T,原CCITT)64kbit/s脉冲编码调制(PCM)语音编码算法的G.711建议,它被广泛应用于数字通信.数字交换机等领域,从而占据统治地位. 1980年:美国政府公布了一种2.4kbit

数字语音信号处理学习笔记——绪论(1)

1.绪论 1.1概述 语言是人类交换信息最方便.最快捷的一种方式,在高度发达的信息社会中,用数字化的方法进行语音的传送.存储.识别.合成和增强等是整个数字化通信网中最重要.最基本的组成部分之一. 语音信号处理技术主要可以应用到: 1) 数字电话通信 2) 高音质的窄带语音通信系统 3) 语言学习机 4) 声控打字机 5) 自动翻译机 6) 智能机器人 7) 新一代计算机语音智能终端 8) 许多军事上的应用 语音信号处理是一门新兴的边缘科学,它是语音学与数字信号处理两个学科相结合的产物.它和认知科

数字语音信号处理学习笔记——同态处理语音信号(1)

5.1 概要 进行处理的方法,它能将两个信号通过乘法合成的信号,或通过卷积合成的信号分开. 对于语音信号.我们的目的是要从声道冲激对应与激励分量的卷积中分开各原始分量. 由卷积结果求得參与卷积的各个信号分量是涉及数字信号处理理论的一项任务,称为"解卷积"或简称"解卷". 对语音信号进行同态分析后.将得到语音信号的倒谱參数,因此同态分析也称为倒谱分析或同态处理. 5.2 叠加原理和广义叠加原理      对于一个线性系统来说,其输入输出的关系服从叠加原理.叠加原理能够

学习笔记(信号与系统)

学习笔记(信号与系统) 来源:网络 第一章 信号和系统 信号的概念.描述和分类 信号的基本运算 典型信号 系统的概念和分类 1.常常把来自外界的各种报道统称为消息: 信息是消息中有意义的内容: 信号是反映信息的各种物理量,是系统直接进行加工.变换以实现通信的对象. 信号是信息的表现形式,信息是信号的具体内容:信号是信息的载体,通过信号传递信息. 2.系统(system):是指若干相互关联的事物组合而成具有特定功能的整体. 3.信号的描述--数学描述,波形描述. 信号的分类: 1)确定信号(规则信

Linux System Programming 学习笔记(十) 信号

1. 信号是软中断,提供处理异步事件的机制 异步事件可以是来源于系统外部(例如用户输入Ctrl-C)也可以来源于系统内(例如除0) 内核使用以下三种方法之一来处理信号: (1) 忽略该信号.SIGKILL和SIGSTOP不能被忽略. (2) 捕捉并且处理该信号.The kernel will suspend execution of the process's current code path and jump to a previously registered function. SIGK

[离散时间信号处理学习笔记] 11. 连续时间信号的采样与重构

这一节主要讨论采样定理,在<傅里叶变换及其应用及其学习笔记>中有进行过推导与讲解,因此下面的内容也大同小异.不过如果是从<离散时间信号处理>这一本书的内容开始学习到这一节,则应先学习本文内容所需要的一些前置知识:傅里叶变换(连续时间),主要用到的是脉冲函数$\delta$,以及周期脉冲函数Ш的傅里叶变换与相关性质. 周期采样 假设有连续信号$x_c(t)$,我们需要通过对该信号进行采样才能得到离散信号,即样本序列$x[n]$.连续信号与离散信号有以下关系: $x[n] = x_c(