[汇编与C语言关系]4. 结构体和联合体

用反汇编的方法研究一下C语言的结构体:

#include <stdio.h>

int main(int argc, char ** argv)
{
    struct {
        char a;
        short b;
        int c;
        char d;
    } s;

    s.a = 1;
    s.b = 2;
    s.c = 3;
    s.d = 4;
    printf("%u\n", sizeof(s));

    return 0;
}

  main函数中几条语句的反汇编结果如下:

  

  从访问结构体成员的指令可以看出,结构体的四个成员在栈上是这样排列的:

  

  虽然栈是从高地址向低地址增长的,但结构体成员也是从低地址向高地址排列的,这一点和数组类似。与数组不同的是结构体成员之间不是一个紧挨一个排列的,中间有空隙,称为填充(Padding),不仅如此,在这个结构体的末尾也有三个字节的填充,所以sizeof(s)的值是12。printf的%u转换说明表示无符号数,sizeof的值是siez_t类型的,是某种无符号整形。

  为什么编译器要这样处理呢? 大多数计算机体系结构对于访问内存的指令是由限制的,在32位平台上,访问4字节的指令(比如上面的movl)所访问的内存地址应该是4的整数倍,访问两字节的指令(比如上面的movw)所访问的内存地址应该是两字节的整数倍,这称为对齐(Alignment)。如果指令所访问的内存地址没有正确对齐会怎么样呢?在有些平台上将不能访问内存,而是引发一个异常,在x86平台上倒是仍然能访问内存,但是不对齐的指令执行效率比对齐的指令要低,所以编译器在安排各种变量的地址时都会考虑到对齐的问题。对于本例中的结构体,编译器会把它的基地址对齐到4字节边界,也就是说ebp-0x10这个地址一定是4的整数倍。s.a占一个字节,没有对齐的问题。s.b占用两个字节,如果s.b紧挨在s.a后面,它的地址就不能是两字节的整数倍了,所以编译器会在结构体中插入一个填充字节。使s.b的地址也是两字节的整数倍。s.c占4字节,紧挨在s.b的后面就可以了,因为ebp-0xc这个地址也是4的整数倍。那么为什么s.d的后面也要有填充位填充到4字节边界呢?这是为了便于安排这个结构体后面的变量的地址,加入用这种结构体类型组成一个数组,那么后一个结构体只需和前一个结构体紧挨着排列就可以保证它的基地址仍然对齐到4字节边界了,因为在前一个结构体的末尾已经有了填充字节。合理设计结构体个成员的排列顺序可以节省存储空间,例如上例结构体可以改成如下:

struct {
    char a;
    char d;
    short b;
    int c;
} s;

  此外gcc提供了一种扩展语法可以消除结构体中的填充字节:

struct {
    char a;
    short b;
    int c;
    char d;
} __attribute__((packed)) s;

  这样就不能保证结构体成员对齐了,在访问b和c的时候可能会有效率问题。

  以前我们使用的数据类型都是占几个字节,最小的类型也要占一个字节,而在结构体中还可以使用Bit Field语法定义只占几个Bit的成员。

  

#include <stdio.h>
typedef struct {
    unsigned int one:1;
    unsigned int two:3;
    unsigned int three:10;
    unsigned int four:5;
    unsigned int :2;
    unsigned int five:8;
    unsigned int six:8;
} demo_type;
int main(void)
{
    demo_type s = { 1, 5, 513, 17, 129, 0x81 };
    printf("sizeof demo_type = %u\n", sizeof(demo_type));
    printf("values: s=%u,%u,%u,%u,%u,%u\n", s.one, s.two, s.three,s.four, s.five, s.six);
    return 0;
}

  s这个结构体的布局如下所示:

  

  Bit Field成员的类型可以是int或unsigned int, 表示有符号数或无符号数,但不表示它像普通的int型一样站4个字节,它后面的数字是几就表示它占多少个Bit,也可以像unsigned int:2这样定义一个未命名的Bit Field,即使不写未命名的Bit Field,编译器也有可能在两个成员之间插入填充位,如上图的five和six之间,这样six这个成员就刚好单独占一个字节了,访问效率会比较高,这个结构体的末尾还填充了3个字节,以便对齐到4字节边界。x86的Byte Order是小端的,从上图中one和two的排列顺序可以看出,如果对一个字节再细分,则字节中的Bit Order也是小端的,因为排在结构体前面的成员(靠近低地址一边的成员)取字节中的低位。Bit Field在驱动程序中是很有用的,因为经常需要单独操作设备寄存器中的一个或几个Bit。

时间: 2024-11-03 22:20:14

[汇编与C语言关系]4. 结构体和联合体的相关文章

关于c语言中的结构体使用偏移量求值问题

最近在看nginx源码,看到定时器的时候,发现一个结构体利用偏移量求值问题, 结构体相信做c开发的都遇到过,那么不知你对结构体中成员变量偏移这块是如何理解的; 首先我们先看一下nginx中的那个让我迷惑的地方 ev =    (event_t*)((char*)node - offsetof(event_t, timer)); 这里,可以得知道是利用event_t结构体的timer变量,来反求event_t结构体的地址 说明一下: event_t是一个结构体 node 也是一个结构体 timer

C语言中的结构体,结构体数组

C语言中的结构体是一个小难点,下面我们详细来讲一下:至于什么是结构体,结构体为什么会产生,我就不说了,原因很简单,但是要注意到是结构体也是连续存储的,但要注意的是结构体里面类型各异,所以必然会产生内存对齐的问题.也就是内存里面会有空档. 1.结构体的定义和赋值 结构体是可以直接初始化的,在定义的时候,就可以初始化,而且如果你的结构体中恰好有字符数组的话,这个时候初始化是不错的选择,原因很简单,字符数组只能定义的时候直接初始化 后来就不可以了,后来你就只能用strcpy函数来拷贝初始化了. str

[汇编与C语言关系]2. main函数与启动例程

为什么汇编程序的入口是_start,而C程序的入口是main函数呢?以下就来解释这个问题 在<x86汇编程序基础(AT&T语法)>一文中我们汇编和链接的步骤是: $ as hello.s -o hello.o $ ld hello.o -o hello 我们用gcc main.c -o main开编译一个c程序,其实际分为三个步骤:编译.汇编.链接 $ gcc -S main.c 生成汇编代码 $ gcc -c main.s 生成目标文件 $ gcc main.o 生成可执行文件 我们

浅谈c语言typedef 与结构体指针(个人小经验)

 #include<stdio.h> #include<string.h> typedef struct emp{ char sex[8]; char name[15]; int age; }*emp;//这里我们用typedef把emp这个结构体变成了*emp这种指向结构体成员的结构体指针 /*typedef struct emp{ char sex[8]; char name[15]; int age; }pi,*emp;//为了程序的可读性最好不要这样声明*/ int m

linux 中 C 语言的使用 -- 结构体多态

在 Linux 内核代码,特别是驱动代码中经常见到的用法是使用一个标准结构,后面的代码基于这个结构来实现,类似面向对象的多态特性. 在 C 语言里面借助结构体和函数指针实现的这个功能,这里我们写了个例子,提取了关键代码: #include <stdio.h> struct s_new{ char name[10]; char* (* my_method)(char *name); }; char* powerful(char *name){ printf("%s is powerfu

9.Go语言基础之结构体

Go语言中没有类的概念,也不支持"类"的继承等面向对象的概念. Go语言中通过结构体的内嵌再配合接口,比面向对象具有更高的扩展性和灵活性. 1.类型别名和自定义类型 1.1自定义类型 在Go语言中有一些基本的数据类型,如string,整型,浮点型,布尔等数据类型,Go语言中可以使用type关键字来定义自定义类型. 自定义类型是定义了一个全新的类型.我们可以基于内置的基本类型定义,也可以通过struct定义. //将MyInt定义为int类型 type MyInt int 通过Type关

Go语言基础之结构体

Go语言中没有“类”的概念,也不支持“类”的继承等面向对象的概念.Go语言中通过结构体的内嵌再配合接口比面向对象具有更高的扩展性和灵活性. 类型别名和自定义类型 自定义类型 在Go语言中有一些基本的数据类型,如string.整型.浮点型.布尔等数据类型, Go语言中可以使用type关键字来定义自定义类型. 自定义类型是定义了一个全新的类型.我们可以基于内置的基本类型定义,也可以通过struct定义.例如: //将MyInt定义为int类型 type MyInt int 通过Type关键字的定义,

数组、结构体、联合体、枚举类型、类型转换

1.数组 int num[2] = { 1, 2 };//1×2,num[0]=1 int num[2][2] = { { 00, 01 }, { 10, 11 } };//2×2,num[1][1]=11 int num[2][2][2] = { {{000,001},{010,011}}, {{100,101},{110,111}} };//2个2×2数组,num[1][1][1]=111 2.结构体 #include <stdio.h> int main() { struct Famil

第五章:数组 结构体 和联合体

1.结构体 2.联合体 3.结构体和联合体的操作 4.非压缩数组 5.压缩数组 6.数组操作 7.数组foreache 循环 8.用于数组的特殊系统函数 结构体 1.结构体成员可以是任何数据类型 包括基本类型和用户自定义类型 2.结构体的声明 var/wire 都可以定义为结构体类型.当定义为结构体类型时,结构体中的成员都必须是四态类型,成员不能是wire类型. 3.结构体的初始化 用值列表方式初始化 '{} 4.结构体的赋值 5.压缩结构体 可以视为独立的变量,具体与向量类似的操作 6.非压缩