题目链接
题解
dp怎么那么神呐QAQ
我们要求出最小字符串长度
我们设一个\(dp[i]\)表示前\(i\)个字符最后所形成的最短字符串长度
对于第\(i\)个字符,要么保留,就是\(dp[i] = dp[i - 1]\),要么和前面若干个字符一起被删掉
我们设\(c[i][j]\)表示区间\([i,j]\)能否被删掉
如果我们能求出\(c[i][j]\)就好了
我们再设一个\(f[i][j][k][t]\)表示区间\([i,j]\)能否匹配第\(k\)个串的前\(t\)个字符
如果存在一个\(k\),使得\(f[i][j][k][len[k]]\)为真,那么\(c[i][j]\)就为真
所以我们只需考虑如何求出\(f[i][j][k][t]\)
就是简单的区间\(dp\)啦
枚举断点\(d\),然后\(f[i][j][k][l] |= f[i][d][k][t] \&\& c[d + 1][j]\)
注意转移的顺序,因为\(f\)和\(c\)是同时计算的,倒序枚举即可
然后就做完啦
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define LL long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<‘ ‘; puts("");
using namespace std;
const int maxn = 155,maxm = 100005,INF = 1000000000;
int f[maxn][maxn][32][23],dp[maxn],c[maxn][maxn],len[32],n,m;
char S[maxn],s[32][23];
int main(){
scanf("%s",S + 1); m = strlen(S + 1);
scanf("%d",&n);
REP(i,n) scanf("%s",s[i] + 1),len[i] = strlen(s[i] + 1);
for (int i = m; i; i--){
for (int j = i; j <= m; j++){
for (int k = 1; k <= n; k++){
f[i][i - 1][k][0] = 1;
for (int l = 1; l <= len[k]; l++){
f[i][j][k][l] = (f[i][j - 1][k][l - 1] && S[j] == s[k][l]);
for (int d = i; d < j; d++)
f[i][j][k][l] |= (f[i][d][k][l] && c[d + 1][j]);
}
}
for (int k = 1; k <= n; k++) c[i][j] |= f[i][j][k][len[k]];
}
}
for (int i = 1; i <= m; i++){
dp[i] = dp[i - 1] + 1;
for (int j = 1; j <= i; j++) if (c[j][i]) dp[i] = min(dp[i],dp[j - 1]);
}
printf("%d\n",dp[m]);
return 0;
}
原文地址:https://www.cnblogs.com/Mychael/p/8993229.html
时间: 2024-10-08 03:00:51