●BZOJ 3566 [SHOI2014]概率充电器

题链:

http://www.lydsy.com/JudgeOnline/problem.php?id=3566
题解:

概率dp,树形dp
如果求出每个点被通电的概率t,
那么期望答案就是t1×1+t2×1+t3*1+...+tn×1
现在问题就是要去求每个点被通电的概率。
因为是一颗树,所以每个点是否通电只由三个因素决定:
自己给自己通电;儿子给自己通电;父亲给自己通电。
这里采取求反面的方法:
对于每个点u,
1.求出u所在的子树不能给u点通电的概率f[u]。
2.求出u的父亲不能给u点通电的概率g[u]。
那么最终,每个点可以被通电的概率就是1-f[u]*g[u].
对于f[u]的求法:
dfs这颗树,用儿子v去更新父亲节点u:
$$f[u]=(1-q[u])\times \prod_{u->v:p(边的概率为p)}(f[v]+(1-f[v])*(1-p))$$
对于g[u]的求法:
同样的dfs这颗树,用父亲u去更新儿子节点v
先求出除了v之外,其他的点使得u通电的概率:t=f[u]*g[u]/(f[v]+(1-f[v])*(1-p));
(就是除掉儿子对父亲的贡献,注意(f[v]+(1-f[v])*(1-p))等于0的情况)
然后$$g[v]=t+(1-t)\times (1-p)$$

然后计算答案即可。

代码:

#include<bits/stdc++.h>
#define MAXN 500005
using namespace std;
const double eps=1e-9;
int dcmp(double x){
	if(fabs(x)<eps) return 0;
	return x>0?1:0;
}
struct Edge{
	int ent; double p[MAXN*2];
	int to[MAXN*2],nxt[MAXN*2],head[MAXN];
	Edge(){ent=2;}
	void Adde(int u,int v,int w){
		to[ent]=v; p[ent]=1.0*w/100;
		nxt[ent]=head[u]; head[u]=ent++;
	}
}E;
double f[MAXN],g[MAXN],q[MAXN],ANS;
int N;
void dfs1(int u,int dad){
	f[u]=(1-q[u]);
	for(int e=E.head[u];e;e=E.nxt[e]){
		int v=E.to[e]; if(v==dad) continue;
		dfs1(v,u);
		f[u]*=(f[v]+(1-f[v])*(1-E.p[e]));
	}
}
void dfs2(int u,int dad){
	double t;
	for(int e=E.head[u];e;e=E.nxt[e]){
		int v=E.to[e]; if(v==dad) continue;
		if(dcmp(f[v]+(1-f[v])*(1-E.p[e]))!=0)
			t=f[u]*g[u]/(f[v]+(1-f[v])*(1-E.p[e]));
		else t=0;
		g[v]=t+(1-t)*(1-E.p[e]);
		dfs2(v,u);
	}
}
int main(){
	ios::sync_with_stdio(0);
	cin>>N;
	for(int i=1,a,b,c;i<N;i++)
		cin>>a>>b>>c,E.Adde(a,b,c),E.Adde(b,a,c);
	for(int i=1;i<=N;i++)
		cin>>q[i],q[i]/=100;
	g[1]=1;
	dfs1(1,0);
	dfs2(1,0);
	for(int i=1;i<=N;i++)
		ANS+=1-f[i]*g[i];
	cout<<fixed<<setprecision(6)<<ANS<<endl;
	return 0;
}

  

原文地址:https://www.cnblogs.com/zj75211/p/8543048.html

时间: 2024-10-20 01:09:05

●BZOJ 3566 [SHOI2014]概率充电器的相关文章

bzoj 3566: [SHOI2014]概率充电器 树形DP

首先普及一个概率公式 P(A+B)=P(A)+P(B)-P(AB) 题意:一些充电元件和导线构成一棵树,充电元件是否能充电有2种情况, 1.它自己有qi%的概率充电 2.与它相邻的元件通过导线给它充电(导线有p%的概率导通) 求最终充了电的元件的期望 题解:首先可以将元件能否充电分成3种情况考虑, 1.它自己给自己充好了电 2.它的儿子方向给它传送了电 3.它的父亲方向给它传送了电. 对于1,题目已经给出可以直接赋值, 对于2,可以通过一次树的深度遍历求得.pson[now]=pson[now]

bzoj 3566: [SHOI2014]概率充电器

Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器:"采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率充电器,您生活不可或缺的必需品!能充上电吗?现在就试试看吧!"SHOI 概率充电器由 n-1 条导线连通了 n 个充电元件.进行充电时,每条导线是否可以导电以概率决定,每一个充电元件自身是否直接进行充电也由概率决定.随后电能可以从直接充电的元件经过通电的导线使得其他充电元件进行间接充电.作为 SHO

BZOJ 3566 SHOI2014 概率充电器 树形期望DP

题目大意:给定一棵树,每个点初始有一个概率为1,为1的节点会沿着边以边权上的概率向四周扩散,求最终期望有多少个点是1 OTZ 不想写题解了贴个代码吧= = 如果有不明白做法的直接问我就好了= = #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #define M 500500 #define EPS 1e-7 using namespace std;

【BZOJ】3566: [SHOI2014]概率充电器

[算法]树型DP+期望DP [题意]一棵树上每个点均有直接充电概率qi%,每条边有导电概率pi%,问期望有多少结点处于充电状态? [题解]引用自:[BZOJ3566][SHOI2014]概率充电器 树形DP 概率DP by 空灰冰魂 最大的难点在于计算每个点充电期望时,两个节点各自的期望都会影响对方的期望. 所以考虑转化对象,改为求每个节点充不上电的期望,充不上电就不用考虑两者的相互影响. fi表示结点i由子结点和自身充不上电的概率 gi表示结点i由父结点充不上电的概率 第一次DFS: hi表示

[SHOI2014]概率充电器

[SHOI2014]概率充电器 题目 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:“采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率充电器,您生活不可或缺的必需品!能充上电吗?现在就试试看吧!”SHOI 概率充电器由 n-1 条导线连通了 n 个充电元件.进行充电时,每条导线是否可以导电以概率决定,每一个充电元件自身是否直接进行充电也由概率决定.随后电能可以从直接充电的元件经过通电的导线使得其他充电元件进行间接充电.作为 S

Bzoj3566 [SHOI2014]概率充电器

Time Limit: 40 Sec  Memory Limit: 256 MBSubmit: 999  Solved: 428 Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:“采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率充电器,您生活不可或缺的必需品!能充上电吗?现在就试试看吧!”SHOI 概率充电器由 n-1 条导线连通了 n 个充电元件.进行充电时,每条导线是否可以导电以概率决定,每一个充电元

【bzoj3566】[SHOI2014]概率充电器 树形概率dp

题目描述 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:“采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率充电器,您生活不可或缺的必需品!能充上电吗?现在就试试看吧!”SHOI 概率充电器由 n-1 条导线连通了 n 个充电元件.进行充电时,每条导线是否可以导电以概率决定,每一个充电元件自身是否直接进行充电也由概率决定.随后电能可以从直接充电的元件经过通电的导线使得其他充电元件进行间接充电.作为 SHOI 公司的忠实客户,你无

P4284 [SHOI2014]概率充电器

链接:https://www.luogu.org/problemnew/show/P4284 题目描述 著名的电子产品品牌SHOI 刚刚发布了引领世界潮流的下一代电子产品-- 概率充电器: "采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决 定!SHOI 概率充电器,您生活不可或缺的必需品!能充上电吗?现在就试试看 吧!" SHOI 概率充电器由n-1 条导线连通了n 个充电元件.进行充电时,每条导 线是否可以导电以概率决定,每一个充电元件自身是否直接进行充电也由概率 决

【[SHOI2014]概率充电器】

这是一道概率+树形\(dp\) 首先我们看到这里每一个的贡献都是1,所以我们要求的期望就是概率 求得其实就是这个 \[\sum_{i=1}^nP_i\] \(P_i\)为节点\(i\)通电的概率 显然节点\(i\)通电有三种可能 它自己来电了 它的子树里有一个点来电了传了过来 它的子树外面有一个点来电了传了过来 第一种情况最好考虑了,至于第二种和第三种我们好像很难解决的样子 但是这显然也告诉了我们这是一个套路题,第二种和第三种正好就是树规里的\(up\) \(and\) \(down\)思想 于