棋盘覆盖及匈牙利算法

题目描述 Description

给出一张n*n(n<=100)的国际象棋棋盘,其中被删除了一些点,问可以使用多少1*2的多米诺骨牌进行掩盖。

输入描述 Input Description

第一行为n,m(表示有m个删除的格子)
第二行到m+1行为x,y,分别表示删除格子所在的位置
x为第x行
y为第y列

输出描述 Output Description

一个数,即最大覆盖格数

样例输入 Sample Input

8 0

样例输出 Sample Output

32

数据范围及提示 Data Size & Hint

经典问题

思路

  容易看出这是一个二分图匹配的问题,是用来练习匈牙利算法的好方法。把棋盘染色,一块骨牌必须覆盖一个黑格和一个白格。将黑格和白格分成两个集合,即二分图模型,求其最大匹配即可。关键是如何将棋盘抽象成点以及建立联系。下面附对匈牙利算法的理解。

理解二分图匹配和匈牙利算法

{转载先说明出处:http://blog.csdn.net/pi9nc/article/details/11848327}

二分图:简单来说,如果图中点可以被分为两组,并且使得所有边都跨越组的边界,则这就是一个二分图。准确地说:把一个图的顶点划分为两个不相交集 U  和 V ,使得每一条边都分别连接U 、 V  中的顶点。如果存在这样的划分,则此图为一个二分图。二分图的一个等价定义是:不含有「含奇数条边的环」的图。图 1 是一个二分图。为了清晰,我们以后都把它画成图 2 的形式。

匹配:在图论中,一个「匹配」(matching)是一个边的集合,其中任意两条边都没有公共顶点。例如,图 3、图 4 中红色的边就是图 2 的匹配。

      

我们定义匹配点匹配边未匹配点非匹配边,它们的含义非常显然。例如图 3 中 1、4、5、7 为匹配点,其他顶点为未匹配点;1-5、4-7为匹配边,其他边为非匹配边。

最大匹配:一个图所有匹配中,所含匹配边数最多的匹配,称为这个图的最大匹配。图 4 是一个最大匹配,它包含 4 条匹配边。

完美匹配:如果一个图的某个匹配中,所有的顶点都是匹配点,那么它就是一个完美匹配。图 4 是一个完美匹配。显然,完美匹配一定是最大匹配(完美匹配的任何一个点都已经匹配,添加一条新的匹配边一定会与已有的匹配边冲突)。但并非每个图都存在完美匹配。

-------等等,看得头大?那么请看下面的版本:

{转载先说明出处:http://blog.csdn.net/dark_scope/article/details/8880547}

通过数代人的努力,你终于赶上了剩男剩女的大潮,假设你是一位光荣的新世纪媒人,在你的手上有N个剩男,M个剩女,每个人都可能对多名异性有好感(-_-||暂时不考虑特殊的性取向),如果一对男女互有好感,那么你就可以把这一对撮合在一起,现在让我们无视掉所有的单相思(好忧伤的感觉),你拥有的大概就是下面这样一张关系图,每一条连线都表示互有好感。

本着救人一命,胜造七级浮屠的原则,你想要尽可能地撮合更多的情侣,匈牙利算法的工作模式会教你这样做:

===============================================================================

一: 先试着给1号男生找妹子,发现第一个和他相连的1号女生还名花无主,got it,连上一条蓝线

===============================================================================

:接着给2号男生找妹子,发现第一个和他相连的2号女生名花无主,got it

===============================================================================

:接下来是3号男生,很遗憾1号女生已经有主了,怎么办呢?

我们试着给之前1号女生匹配的男生(也就是1号男生)另外分配一个妹子。

(黄色表示这条边被临时拆掉)

与1号男生相连的第二个女生是2号女生,但是2号女生也有主了,怎么办呢?我们再试着给2号女生的原配()重新找个妹子(注意这个步骤和上面是一样的,这是一个递归的过程)

此时发现2号男生还能找到3号女生,那么之前的问题迎刃而解了,回溯回去

2号男生可以找3号妹子~~~                  1号男生可以找2号妹子了~~~                3号男生可以找1号妹子

所以第三步最后的结果就是:

===============================================================================

: 接下来是4号男生,很遗憾,按照第三步的节奏我们没法给4号男生腾出来一个妹子,我们实在是无能为力了……香吉士同学走好。

===============================================================================

这就是匈牙利算法的流程,其中找妹子是个递归的过程,最最关键的字就是“腾”字

其原则大概是:有机会上,没机会创造机会也要上

基本概念讲完了。求解最大匹配问题的一个算法是匈牙利算法,下面讲的概念都为这个算法服务。

交替路:从一个未匹配点出发,依次经过非匹配边、匹配边、非匹配边...形成的路径叫交替路。

增广路:从一个未匹配点出发,走交替路,如果途径另一个未匹配点(出发的点不算),则这条交替路称为增广路(agumenting path)。例如,图 5 中的一条增广路如图 6 所示(图中的匹配点均用红色标出):

增广路有一个重要特点:非匹配边比匹配边多一条。因此,研究增广路的意义是改进匹配。只要把增广路中的匹配边和非匹配边的身份交换即可。由于中间的匹配节点不存在其他相连的匹配边,所以这样做不会破坏匹配的性质。交换后,图中的匹配边数目比原来多了 1 条。

我们可以通过不停地找增广路来增加匹配中的匹配边和匹配点。找不到增广路时,达到最大匹配(这是增广路定理)。匈牙利算法正是这么做的。在给出匈牙利算法 DFS 和 BFS 版本的代码之前,先讲一下匈牙利树。

匈牙利树一般由 BFS 构造(类似于 BFS 树)。从一个未匹配点出发运行 BFS(唯一的限制是,必须走交替路),直到不能再扩展为止。例如,由图 7,可以得到如图 8 的一棵 BFS 树:

       

这棵树存在一个叶子节点为非匹配点(7 号),但是匈牙利树要求所有叶子节点均为匹配点,因此这不是一棵匈牙利树。如果原图中根本不含 7 号节点,那么从 2 号节点出发就会得到一棵匈牙利树。这种情况如图 9 所示(顺便说一句,图 8 中根节点 2 到非匹配叶子节点 7 显然是一条增广路,沿这条增广路扩充后将得到一个完美匹配)。

代码

不给

时间: 2024-10-09 17:31:56

棋盘覆盖及匈牙利算法的相关文章

棋盘覆盖问题(算法竞赛入门经典)

在一个 2^k * 2^k 个方格组成的棋盘中,若恰有一个方格与其它方格不同,则称该方格为一特殊方格,称该棋盘为一特殊棋盘.显然特殊方格在棋盘上出现的位置有 4^k 种情形.因而对任何 k>=0 ,有 4^k 种不同的特殊棋盘.下图所示的特殊棋盘为 k=2 时 16 个特殊棋盘中的一个. 在棋盘覆盖问题中,要用下图中 4 中不同形态的 L 型骨牌覆盖一个给定的特殊棋牌上除特殊方格以外的所有方格,且任何 2 个 L 型骨牌不得重叠覆盖.易知,在任何一个 2^k * 2^k 的棋盘中,用到的 L 型

【codevs】1022覆盖(匈牙利算法)

嗯,先上题目描述... 此题接近裸的匈牙利算法,将陆地和其四周是陆地的点连一条边,这样就有了一个无向图. 接着就是从第一个点出发枚举未被标记的点,标记与其对应的另一个点(因为是1*2的长方形). 开了一个四维数组e[x1][y1][x2][y2],若为零代表点(x1,y1)与(x2,y2)不连通. match[x1][y1][1]放与点(x1,y1)配对的另一个点的x,match[x1][y1][2]放与点(x1,y1)配对点的y. 还有就是更改的时候记得双向更改,因为是无向图啊. 然后就跑df

[HDOJ1151]Air Raid(最小路径覆盖,匈牙利算法)

题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=1151 题意:就是求最小路径覆盖,根据定义出的题. 1 /* 2 ━━━━━┒ギリギリ♂ eye! 3 ┓┏┓┏┓┃キリキリ♂ mind! 4 ┛┗┛┗┛┃\○/ 5 ┓┏┓┏┓┃ / 6 ┛┗┛┗┛┃ノ) 7 ┓┏┓┏┓┃ 8 ┛┗┛┗┛┃ 9 ┓┏┓┏┓┃ 10 ┛┗┛┗┛┃ 11 ┓┏┓┏┓┃ 12 ┛┗┛┗┛┃ 13 ┓┏┓┏┓┃ 14 ┃┃┃┃┃┃ 15 ┻┻┻┻┻┻ 16 */

计算机算法设计与分析之棋盘覆盖问题

一.引子 最近又重新上了算法课,现在想来有点汗颜,大学期间已经学习了一个学期,到现在却依然感觉只是把老师讲过的题目弄懂了,并没有学到算法的一些好的分析方法和思路,碰到一个新的问题后往往感觉很棘手,痛定思痛之后觉得还是好好再学习一遍,争取能理解透彻每种算法的思路和核心,同时也劝诫各位同行们做事要脚踏实地,不能应付老师的作业,最后吃亏的还是自己啊. 二.棋盘覆盖问题 在一个由2^k *2^k个方格组成的棋盘中,恰有一个方格与其他方格不同,称该方格为一特殊方格,且称该棋盘 为一特殊棋盘.现有四种L型骨

算法实验--棋盘覆盖

一.实验目的: 熟悉掌握分治算法设计技术 二.实验要求: 1.按教材所授内容要求,完成“棋盘覆盖问题”算法.得到一个完整正确的程序. 2.棋盘大小:32*32(或16*16) 3.输出最终结果. 三.实验设备及环境: PC机一台.java虚拟机Eclipse或jdk环境 四.问题描述: 通过一门语言写一个棋盘覆盖算法,并对棋盘着色,使L型骨牌能够使用相同的颜色,能够在棋盘中一眼看出棋子所在的地方和对棋盘着色的效果. 五.算法分析: 添加               按钮 对象          

js算法:分治法-棋盘覆盖

在一个 2^k * 2^k 个方格组成的棋盘中,若恰有一个方格与其他方格不同.则称该方格为一特殊方格,称该棋盘为一特殊棋盘.显然特殊方格在棋盘上出现的位置有 4^k 种情形.因而对不论什么 k>=0 .有 4^k 种不同的特殊棋盘. 下图所看到的的特殊棋盘为 k=2 时 16 个特殊棋盘中的一个. 在棋盘覆盖问题中,要用下图中 4 中不同形态的 L 型骨牌覆盖一个给定的特殊棋牌上除特殊方格以外的全部方格,且不论什么 2 个 L 型骨牌不得重叠覆盖. 易知,在不论什么一个 2^k * 2^k 的棋

算法之棋盘覆盖

棋盘覆盖分析与实现 一.什么是棋盘覆盖? 首先来了解什么是特殊方格在一个2^k*2^k个方格组成的棋盘中,若恰有一个方格与其他方格不同,则称该方格为特殊方格,显然,特殊方格出现的位置有4^k种情况,即k>=0,有4^k种不同的特殊棋盘 棋盘覆盖:用4种不同的L型骨牌覆盖一个给定的特殊棋盘(即特殊方格的位置已经确定了)上除去特殊方格外的所有方格,且任何两个L型骨牌不得重复覆盖,按照规则,我们很容易知道,在2^k*2^k的棋盘覆盖中,用到的L型骨盘数恰为(4^k-1)/3,即(所有方格个数-特殊方格

【棋盘覆盖】(简单)--分治算法

算法实验1:棋盘覆盖 Time Limit: 1 Sec  Memory Limit: 64 MB Submit: 2798  Solved: 702 [Submit][Status][Discuss] Description 在一个2k x 2k 个方格组成的棋盘中,恰有一个方格与其他方格不同,称该方格为一特殊方格,且称该棋盘为一特殊棋盘.在棋盘覆盖问题中,要用图示的4种不同形态的L型骨牌覆盖给定的特殊棋盘上除特殊方格以外的所有方格,且任何2个L型骨牌不得重叠覆盖. 口            

POJ 1325 Machine Schedule (二分图最小点集覆盖 匈牙利算法)

Machine Schedule Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 12621   Accepted: 5399 Description As we all know, machine scheduling is a very classical problem in computer science and has been studied for a very long history. Scheduli