机器学习实战读书笔记(四)基于概率论的分类方法:朴素贝叶斯

4.1 基于贝叶斯决策理论的分类方法

  朴素贝叶斯

  优点:在数据较少的情况下仍然有效,可以处理多类别问题

  缺点:对于输入数据的准备方式较为敏感

  适用数据类型:标称型数据

  贝叶斯决策理论的核心思想:选择具有最高概率的决策。

4.2 条件概率

4.3 使用条件概率来分类

4.4 使用朴素贝叶斯进行文档分类

  朴素贝叶斯的一般过程:

  1.收集数据

  2.准备数据

  3.分析数据

  4.训练算法

  5.测试算法

  6.使用算法

  朴素贝叶斯分类器中的另一个假设是,每个特征同等重要。

4.5 使用Python进行文本分类

4.5.1 准备数据:从文本中构建词向量

  建立bayes.py文件

def loadDataSet():
    postingList=[[‘my‘, ‘dog‘, ‘has‘, ‘flea‘, ‘problems‘, ‘help‘, ‘please‘],
                 [‘maybe‘, ‘not‘, ‘take‘, ‘him‘, ‘to‘, ‘dog‘, ‘park‘, ‘stupid‘],
                 [‘my‘, ‘dalmation‘, ‘is‘, ‘so‘, ‘cute‘, ‘I‘, ‘love‘, ‘him‘],
                 [‘stop‘, ‘posting‘, ‘stupid‘, ‘worthless‘, ‘garbage‘],
                 [‘mr‘, ‘licks‘, ‘ate‘, ‘my‘, ‘steak‘, ‘how‘, ‘to‘, ‘stop‘, ‘him‘],
                 [‘quit‘, ‘buying‘, ‘worthless‘, ‘dog‘, ‘food‘, ‘stupid‘]]
    classVec = [0,1,0,1,0,1]    #1 is abusive, 0 not
    return postingList,classVec

def createVocabList(dataSet):
    vocabSet = set([])  #create empty set
    for document in dataSet:
        vocabSet = vocabSet | set(document) #union of the two sets
    return list(vocabSet)

def setOfWords2Vec(vocabList, inputSet):
    returnVec = [0]*len(vocabList)
    for word in inputSet:
        if word in vocabList:
            returnVec[vocabList.index(word)] = 1
        else: print "the word: %s is not in my Vocabulary!" % word
    return returnVec
import bayes
listOPosts,listClasses=bayes.loadDataSet() #
myVocabList=bayes.createVocabList(listOPosts)
bayes.setOfWords2Vec(myVocabList,listOPosts[0])
bayes.setOfWords2Vec(myVocabList,listOPosts[3])

4.5.2 训练算法,从词向量计算概率

  改写贝叶斯,使用以下公式:

  

  w为向量,p(w|ci)可以展开为p(w0,w1...wN|ci),假设所有词相互独立 ,那么该假设也称作条件独立性假设,这表示可以使用p(w0|ci)p(w1|ci)...p(wn|ci)计算上述概率。

  该函数伪代码如下:

  计算每个类别中的文档数目

  对每篇训练文档:

    对每个类别:

      如果词条出现在文档中->增加该词条的计数值

      增加所有词条的计数值

    对每个类别:

      对每个词条:

        将该词条的数目除以总词条数目得到条件概率

    返回每个类别的条件概率  

def trainNB0(trainMatrix,trainCategory):
    numTrainDocs = len(trainMatrix)
    numWords = len(trainMatrix[0])
    pAbusive = sum(trainCategory)/float(numTrainDocs)
    p0Num = zeros(numWords); p1Num = zeros(numWords)      #change to ones()
    p0Denom = 0.0; p1Denom = 0.0                        #change to 2.0
    for i in range(numTrainDocs):
        if trainCategory[i] == 1:
            p1Num += trainMatrix[i]
            p1Denom += sum(trainMatrix[i])
        else:
            p0Num += trainMatrix[i]
            p0Denom += sum(trainMatrix[i])
    p1Vect = p1Num/p1Denom          #change to log()
    p0Vect = p0Num/p0Denom          #change to log()
    return p0Vect,p1Vect,pAbusive
trainMat=[]
for postinDoc in listOPosts:
    trainMat.append(bayes.setOfWords2Vec(myVocabList,postinDoc))
p0V,p1V,pAb=bayes.trainNB0(trainMat,listClasses)

4.5.3 测试算法:根据现实情况修改分类器

  利用贝叶斯分类器对文档进行分类时,要计算多个概率的乘积以获得文档属于某个类别的概率,即计算p(w0|1)p(w1|1)...,如果其中一个概率值为0,那么最后乘积也为0。为降低这种影响,可以将所有词的出现数初始化为1,并将分母初始化为2.

  修改TrainNB0()  

def trainNB0(trainMatrix,trainCategory):
    numTrainDocs = len(trainMatrix)
    numWords = len(trainMatrix[0])
    pAbusive = sum(trainCategory)/float(numTrainDocs)
    p0Num = ones(numWords); p1Num = ones(numWords)      #change to ones()
    p0Denom = 2.0; p1Denom = 2.0                        #change to 2.0
    for i in range(numTrainDocs):
        if trainCategory[i] == 1:
            p1Num += trainMatrix[i]
            p1Denom += sum(trainMatrix[i])
        else:
            p0Num += trainMatrix[i]
            p0Denom += sum(trainMatrix[i])
    p1Vect = p1Num/p1Denom          #change to log()
    p0Vect = p0Num/p0Denom          #change to log()
    return p0Vect,p1Vect,pAbusive

  另一个遇到的问题是下溢出,这是由于太多很小的数相乘造成的。当计算p(w0|1)p(w1|1)...时,由于大部分因子都很小,所以程序会下溢出或得到不正确的答案。一种解决办法是对乘积取自然对数。在代数中有ln(a*b)=ln(a)+ln(b),于是通过求对数可以避免下溢出或者浮点数舍入导致的错误。同时,采用自然对数进行处理不会有任何损失。因此,修改TrainNB0

def trainNB0(trainMatrix,trainCategory):
    numTrainDocs = len(trainMatrix)
    numWords = len(trainMatrix[0])
    pAbusive = sum(trainCategory)/float(numTrainDocs)
    p0Num = ones(numWords); p1Num = ones(numWords)      #change to ones()
    p0Denom = 2.0; p1Denom = 2.0                        #change to 2.0
    for i in range(numTrainDocs):
        if trainCategory[i] == 1:
            p1Num += trainMatrix[i]
            p1Denom += sum(trainMatrix[i])
        else:
            p0Num += trainMatrix[i]
            p0Denom += sum(trainMatrix[i])
    p1Vect = log(p1Num/p1Denom)          #change to log()
    p0Vect = log(p0Num/p0Denom)          #change to log()
    return p0Vect,p1Vect,pAbusive

  编写分类函数

def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
    p1 = sum(vec2Classify * p1Vec) + log(pClass1)    #element-wise mult
    p0 = sum(vec2Classify * p0Vec) + log(1.0 - pClass1)
    if p1 > p0:
        return 1
    else:
        return 0

def bagOfWords2VecMN(vocabList, inputSet):
    returnVec = [0]*len(vocabList)
    for word in inputSet:
        if word in vocabList:
            returnVec[vocabList.index(word)] += 1
    return returnVec

def testingNB():
    listOPosts,listClasses = loadDataSet()
    myVocabList = createVocabList(listOPosts)
    trainMat=[]
    for postinDoc in listOPosts:
        trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
    p0V,p1V,pAb = trainNB0(array(trainMat),array(listClasses))
    testEntry = [‘love‘, ‘my‘, ‘dalmation‘]
    thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
    print testEntry,‘classified as: ‘,classifyNB(thisDoc,p0V,p1V,pAb)
    testEntry = [‘stupid‘, ‘garbage‘]
    thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
    print testEntry,‘classified as: ‘,classifyNB(thisDoc,p0V,p1V,pAb)
bayes.testingNB()

4.5.4 准备数据:文档词袋模型

  词集模型:每个词出现一次。

  词袋模型:每个词在文档中出现不止一次。

  把setOfWords2Vec()改为bagOfWords2Vec()

def bagOfWords2VecMN(vocabList, inputSet):
    returnVec = [0]*len(vocabList)
    for word in inputSet:
        if word in vocabList:
            returnVec[vocabList.index(word)] += 1
    return returnVec

4.6 使用朴素贝叶斯过滤垃圾邮件

  1.收集数据:提供文本文件

  2.准备数据:将文本文件解析成词条向量

  3.分析数据:检查词条确保解析的正确性

  4.训练算法:使用我们之前建立的trainNB0()函数

  5.测试算法:使用classifyNB(),并且构建一个新的测试函数来计算文档集的错误率

  6.使用算法:构建一个完整的程序对一组文档进行分类,将错分的文档输出到屏幕上

4.6.1 准备数据:切分文本

4.6.2 测试算法:使用朴素贝叶斯进行交叉验证

  

def textParse(bigString):    #input is big string, #output is word list
    import re
    listOfTokens = re.split(r‘\W*‘, bigString)
    return [tok.lower() for tok in listOfTokens if len(tok) > 2] 

def spamTest():
    docList=[]; classList = []; fullText =[]
    for i in range(1,26):
        wordList = textParse(open(‘email/spam/%d.txt‘ % i).read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(1)
        wordList = textParse(open(‘email/ham/%d.txt‘ % i).read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(0)
    vocabList = createVocabList(docList)#create vocabulary
    trainingSet = range(50); testSet=[]           #create test set
    for i in range(10):
        randIndex = int(random.uniform(0,len(trainingSet)))
        testSet.append(trainingSet[randIndex])
        del(trainingSet[randIndex])
    trainMat=[]; trainClasses = []
    for docIndex in trainingSet:#train the classifier (get probs) trainNB0
        trainMat.append(bagOfWords2VecMN(vocabList, docList[docIndex]))
        trainClasses.append(classList[docIndex])
    p0V,p1V,pSpam = trainNB0(array(trainMat),array(trainClasses))
    errorCount = 0
    for docIndex in testSet:        #classify the remaining items
        wordVector = bagOfWords2VecMN(vocabList, docList[docIndex])
        if classifyNB(array(wordVector),p0V,p1V,pSpam) != classList[docIndex]:
            errorCount += 1
            print "classification error",docList[docIndex]
    print ‘the error rate is: ‘,float(errorCount)/len(testSet)
    #return vocabList,fullText

  以上程序,随机选择10篇作测试集,如果全部判对输出错误率0.0,若有错误则输出错分文档的词表。

4.7 未完成

  

时间: 2024-10-19 13:29:30

机器学习实战读书笔记(四)基于概率论的分类方法:朴素贝叶斯的相关文章

第四章:基于概率论的分类方法: 朴素贝叶斯

本章内容□使用概率分布进行分类□学习朴素贝叶斯分类器□解析RSS源数据口使用朴素贝叶斯来分析不同地区的态度 前两章我们要求分类器做出艰难决策,给出“该数据实例属于哪一类”这类问题的明确答案.不过,分类器有时会产生错误结果,这时可以要求分类器给出一个最优的类别猜测结果,同时给出这个猜测的概率估计值.       概率论是许多机器学习算法的基础,所以深刻理解这一主题就显得十分重要.第3章在计算特征值取某个值的概率时涉及了一些概率知识,在那里我们先统计特征在数据集中取某个特定值的次数,然后除以数据集的

基于概率论的分类方法:朴素贝叶斯算法实践学习

      关于本文说明,本人原博客地址位于http://blog.csdn.net/qq_37608890,本文来自笔者于2017年12月12日 13:03:46所撰写内容(http://blog.csdn.net/qq_37608890/article/details/78738552).             本文根据最近学习机器学习书籍 网络文章的情况,特将一些学习思路做了归纳整理,详情如下.如有不当之处,请各位大拿多多指点,在此谢过.          通过前两篇文章,我们对于k-近

机器学习四 -- 基于概率论的分类方法:朴素贝叶斯

基于概率的分类方法:朴素贝叶斯 贝叶斯决策理论 朴素贝叶斯是贝叶斯决策理论的一部分,所以在讲解朴素贝叶斯之前我们先快速简单了解一下贝叶斯决策理论知识. 贝叶斯决策理论的核心思想:选择具有最高概率的决策.比如我们毕业选择就业方向,选择C++方向的概率为0.3,选择Java的概率为0.2,选择机器学习的概率为0.5.那么我们就把这样的一位毕业生就业方向归类为机器学习方向. 条件概率 什么是条件概率?事件A在另一个事件B已知发生条件下的发生概率,记为P(A|B),读作“在B条件下A的概率”. 例子1:

R实战读书笔记四

第三章 图形入门 本章概要 1 创建和保存图形 2 定义符号.线.颜色和坐标轴 3 文本标注 4 掌控图形维数 5 多幅图合在一起 本章所介绍内容概括如下. 一图胜千字,人们从视觉层更易获取和理解信息. 图形工作 R具有非常强大的绘图功能,看下面代码. > attach(mtcars) > plot(wt, mpg) > abline(lm(mpg~wt)) > title("Regression of MPG on Weight") > detach(m

机器学习(基于概率论的分类方法:朴素贝叶斯)

概率论是许多机器学习算法的基础,因而本篇将会用到一些概率论知识,我们先统计在数据集中取某个特定值的次数,然后除以数据集的实例总数,就得到了取该值的概率. 优点:在数据较少的情况下仍然有效,可以处理多类别问题 缺点:对输入数据的准备方式比较敏感 适用于标称型数据 如果P1(X,Y)>P2(X,Y),那么属于类别1 如果P2(X,Y)>P1(X,Y),那么属于类别2 也就是说我们会选择高概率对应的类别.这就是贝叶斯决策理论的核心思想,即选择具有最高概率的决策 朴素贝叶斯的朴素就是特征之间相互独立

【简单认识】机器学习常见分类算法——朴素贝叶斯

贝叶斯在1763年,<机会学说中一个问题的解>中提出了贝叶斯定理. 生活中不乏分类,比如我们经常通过一些人的衣着,来下意识的区别某些人是杀马特亦或是文艺青年.我们是如何做出这些判断或者说是分类的呢?这些判断大多来自我们的“经验之谈”,即,我们首先脑海中会先存有“某类人通常会如何着装打扮”的概念,然后当遇到这类显著特征之后,便会下意识的对其进行分类. 那么如何让机器进行这种类似的判断区分呢? 朴素贝叶斯分类法是一种相对简单易理解的机器分类方法.它的思想是首先对一些已知分类的样本进行采样(机器学习

机器学习实战读书笔记(三)决策树

3.1 决策树的构造 优点:计算复杂度不高,输出结果易于理解,对中间值的缺失不敏感,可以处理不相关特征数据. 缺点:可能会产生过度匹配问题. 适用数据类型:数值型和标称型. 一般流程: 1.收集数据 2.准备数据 3.分析数据 4.训练算法 5.测试算法 6.使用算法 3.1.1 信息增益 创建数据集 def createDataSet(): dataSet = [[1, 1, 'yes'], [1, 1, 'yes'], [1, 0, 'no'], [0, 1, 'no'], [0, 1, '

机器学习实战读书笔记(二)k-近邻算法

knn算法: 1.优点:精度高.对异常值不敏感.无数据输入假定 2.缺点:计算复杂度高.空间复杂度高. 3.适用数据范围:数值型和标称型. 一般流程: 1.收集数据 2.准备数据 3.分析数据 4.训练算法:不适用 5.测试算法:计算正确率 6.使用算法:需要输入样本和结构化的输出结果,然后运行k-近邻算法判定输入数据分别属于哪个分类,最后应用对计算出的分类执行后续的处理. 2.1.1 导入数据 operator是排序时要用的 from numpy import * import operato

机器学习实战读书笔记(五)Logistic回归

Logistic回归的一般过程 1.收集数据:采用任意方法收集 2.准备数据:由于需要进行距离计算,因此要求数据类型为数值型.另外,结构化数据格式则最佳 3.分析数据:采用任意方法对数据进行分析 4.训练算法:大部分时间将用于训练,训练的目的是为了找到最佳的分类回归系数 5.测试算法:一旦训练步骤完成,分类将会很快. 6.使用算法:首 先,我们需要输入一些数据,并将其转换成对应的结构化数值:接着,基于训练好的回归系数就可以对这些数值进行简单回归计算,判定它们属于哪个类别:在这之后,我们就可以在输