HDU 5430 Reflect(欧拉函数)

题目: http://acm.hdu.edu.cn/showproblem.php?pid=5430

从镜面材质的圆上一点发出一道光线反射NNN次后首次回到起点。
问本质不同的发射的方案数。

输入描述

第一行一个整数T,表示数据组数。T≤10T \leq 10T≤10
对于每一个组,共一行,包含一个整数,表示正整数N(1≤N≤106)N(1 \leq N \leq 10^{6})N(1≤N≤10?6??)。

输出描述

对于每一个组,输出共一行,包含一个整数,表示答案。

输入样例

1
4

输出样例

4
题解: 

PS: 顺便说一下, 发射角是(0, pi)所以 所求的k在1至N+1 而且 如果不是最简分数(既约分数),

会出现重复计算同一个发射角的情况。

吐槽: 卧槽! 其实题解中的知识点,小恪也都想到啦! 无奈没有没有列等式进行化简, 而且我用的是角度值,而不是表示成弧度值 ! 这道题如果能看出是欧拉函数, 题就水啦!

如果看不出, 那么就和小恪一样, 一起继续努力吧! Or2        。

#include<iostream>
#include<cstdio>
using namespace std;

int eular(int n)
{
    int ret = 1, i;
    for (i = 2; i*i<=n; i++)
    if(n%i==0)
    {
        n/=i, ret*=i-1;
        while(n%i==0)
        n/=i, ret*=i;
    }
    if(n>1) ret*=n-1;
    return ret;
} 

int main()
{
    int T, n;
    scanf("%d", &T);
    while(T--)
    {
        scanf("%d", &n);
        if(n==1) puts("1");
        else
        printf("%d\n", eular(n+1));
    }
    return 0;
}
时间: 2024-10-28 18:28:12

HDU 5430 Reflect(欧拉函数)的相关文章

HDU 1695 GCD 欧拉函数+容斥原理+质因数分解

链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:在[a,b]中的x,在[c,d]中的y,求x与y的最大公约数为k的组合有多少.(a=1, a <= b <= 100000, c=1, c <= d <= 100000, 0 <= k <= 100000) 思路:因为x与y的最大公约数为k,所以xx=x/k与yy=y/k一定互质.要从a/k和b/k之中选择互质的数,枚举1~b/k,当选择的yy小于等于a/k时,可以

HDU 2588 GCD (欧拉函数)

GCD Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 1013    Accepted Submission(s): 457 Problem Description The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes writt

hdu 1695 GCD(欧拉函数+容斥原理)

http://acm.hdu.edu.cn/showproblem.php? pid=1695 非常经典的题.同一时候感觉也非常难. 在区间[a,b]和[c,d]内分别随意取出一个数x,y,使得gcd(x,y) = k.问这种(x,y)有多少对.能够觉得a,c均为1,并且gcd(5,7)与gcd(7,5)是同一种. 由于gcd(x,y) = k,那么gcd(x/k,y/k) = 1.也就是求区间[1,b/k]和[1,d/k]内这种(x,y)对使得gcd(x,y) = 1. 为了防止计数反复,首先

HDU 2824 简单欧拉函数

1.HDU 2824   The Euler function 2.链接:http://acm.hdu.edu.cn/showproblem.php?pid=2824 3.总结:欧拉函数 题意:求(a,b)间的欧拉函数值的和. #include<iostream> #include<cstring> #include<cmath> #include<queue> #include<algorithm> #include<cstdio>

hdu 1695 GCD 欧拉函数+容斥

题意:给定a,b,c,d,k x属于[1 , c],y属于[1 , d],求满足gcd(x,y)=k的对数.其中<x,y>和<y,x>算相同. 思路:不妨设c<d,x<=y.问题可以转化为x属于[1,c / k ],y属于[1,d/k ],x和y互质的对数. 那么假如y<=c/k,那么对数就是y从1到c/k欧拉函数的和.如果y>c/k,就只能从[ c/k+1 , d ]枚举,然后利用容斥.详见代码: /****************************

HDU 1695 GCD 欧拉函数+容斥定理

输入a b c d k求有多少对x y 使得x在a-b区间 y在c-d区间 gcd(x, y) = k 此外a和c一定是1 由于gcd(x, y) == k 将b和d都除以k 题目转化为1到b/k 和1到d/k 2个区间 如果第一个区间小于第二个区间 讲第二个区间分成2部分来做1-b/k 和 b/k+1-d/k 第一部分对于每一个数i 和他互质的数就是这个数的欧拉函数值 全部数的欧拉函数的和就是答案 第二部分能够用全部数减去不互质的数 对于一个数i 分解因子和他不互质的数包括他的若干个因子 这个

hdu 1787(欧拉函数+水题)

题意:给出一个n,求小于n大于0的所有与n不互质的数的个数 是一道欧拉函数的模板题 1 #include<iostream> 2 #include<string.h> 3 #include<string> 4 #include<sstream> 5 #include<vector> 6 #include<deque> 7 #include<map> 8 #include<algorithm> 9 #includ

GuGuFishtion HDU - 6390 (欧拉函数,容斥)

GuGuFishtion \[ Time Limit: 1500 ms\quad Memory Limit: 65536 kB \] 题意 给出定义\(Gu(a, b) = \frac{\phi(ab)}{\phi(a)\phi(b)}\) 求出\(\sum_{a=1}^{m}\sum_{b=1}^{n}Gu(a,b) (mod p)\) 思路 首先对于欧拉函数,我们知道欧拉函数的朴素式子为:\(\phi(n) = n*(1-\frac{1}{p1})*(1-\frac{1}{p2}) * ..

hdu 1695 GCD 欧拉函数 + 容斥

http://acm.hdu.edu.cn/showproblem.php?pid=1695 要求[L1, R1]和[L2, R2]中GCD是K的个数.那么只需要求[L1, R1 / K]  和 [L2, R2 / K]中GCD是1的对数. 由于(1, 2)和(2, 1)是同一对. 那么我们枚举大区间,限制数字一定是小于等于枚举的那个数字就行. 比如[1, 3]和[1, 5] 我们枚举大区间,[1, 5],在[1, 3]中找互质的时候,由于又需要要小于枚举数字,那么直接上phi 对于其他的,比如

E - GuGuFishtion HDU - 6390(欧拉函数 / 莫比乌斯反演)

GuGuFishtion (HDU - 6390) 题意: 定义\(G_u (a,b)=\frac{\phi(ab)}{\phi(a)\phi(b)}\). 求\((\sum\limits_{a=1}^m\sum\limits_{b=1}^nG_u (a,b))\pmod p\). 题解: 考虑\(\phi(x) = x*(1-\frac{1}{p_1})*(1-\frac{1}{p_2})...*(1-\frac{1}{p_n})\). 将\(G_u (a,b)\)的分子与分母按上述分解.约分