Kruskal算法(三)之 Java详解

前面分别通过C和C++实现了克鲁斯卡尔,本文介绍克鲁斯卡尔的Java实现。

目录

1. 最小生成树
2.
克鲁斯卡尔算法介绍
3. 克鲁斯卡尔算法图解
4. 克鲁斯卡尔算法分析
5. 克鲁斯卡尔算法的代码说明
6. 克鲁斯卡尔算法的源码

转载请注明出处:http://www.cnblogs.com/skywang12345/

更多内容:数据结构与算法系列
目录

最小生成树

在含有n个顶点的连通图中选择n-1条边,构成一棵极小连通子图,并使该连通子图中n-1条边上权值之和达到最小,则称其为连通网的最小生成树。

例如,对于如上图G4所示的连通网可以有多棵权值总和不相同的生成树。

克鲁斯卡尔算法介绍

克鲁斯卡尔(Kruskal)算法,是用来求加权连通图的最小生成树的算法。

基本思想:按照权值从小到大的顺序选择n-1条边,并保证这n-1条边不构成回路。


具体做法:首先构造一个只含n个顶点的森林,然后依权值从小到大从连通网中选择边加入到森林中,并使森林中不产生回路,直至森林变成一棵树为止。

克鲁斯卡尔算法图解

以上图G4为例,来对克鲁斯卡尔进行演示(假设,用数组R保存最小生成树结果)。

第1步:将边<E,F>加入R中。

    边<E,F>的权值最小,因此将它加入到最小生成树结果R中。

第2步:将边<C,D>加入R中。

    上一步操作之后,边<C,D>的权值最小,因此将它加入到最小生成树结果R中。

第3步:将边<D,E>加入R中。

    上一步操作之后,边<D,E>的权值最小,因此将它加入到最小生成树结果R中。

第4步:将边<B,F>加入R中。

    上一步操作之后,边<C,E>的权值最小,但<C,E>会和已有的边构成回路;因此,跳过边<C,E>。同理,跳过边<C,F>。将边<B,F>加入到最小生成树结果R中。

第5步:将边<E,G>加入R中。

    上一步操作之后,边<E,G>的权值最小,因此将它加入到最小生成树结果R中。

第6步:将边<A,B>加入R中。

    上一步操作之后,边<F,G>的权值最小,但<F,G>会和已有的边构成回路;因此,跳过边<F,G>。同理,跳过边<B,C>。将边<A,B>加入到最小生成树结果R中。

此时,最小生成树构造完成!它包括的边依次是:<E,F>
<C,D> <D,E> <B,F> <E,G> <A,B>

克鲁斯卡尔算法分析

根据前面介绍的克鲁斯卡尔算法的基本思想和做法,我们能够了解到,克鲁斯卡尔算法重点需要解决的以下两个问题:

问题一 对图的所有边按照权值大小进行排序。
问题二
将边添加到最小生成树中时,怎么样判断是否形成了回路。

问题一很好解决,采用排序算法进行排序即可。

问题二,处理方式是:记录顶点在"最小生成树"中的终点,顶点的终点是"在最小生成树中与它连通的最大顶点"(关于这一点,后面会通过图片给出说明)。然后每次需要将一条边添加到最小生存树时,判断该边的两个顶点的终点是否重合,重合的话则会构成回路。
以下图来进行说明:

在将<E,F> <C,D>
<D,E>加入到最小生成树R中之后,这几条边的顶点就都有了终点:

(01)
C的终点是F。
(02) D的终点是F。
(03) E的终点是F。

(04) F的终点是F。

关于终点,就是将所有顶点按照从小到大的顺序排列好之后;某个顶点的终点就是"与它连通的最大顶点"。
因此,接下来,虽然<C,E>是权值最小的边。但是C和E的重点都是F,即它们的终点相同,因此,将<C,E>加入最小生成树的话,会形成回路。这就是判断回路的方式。

克鲁斯卡尔算法的代码说明

有了前面的算法分析之后,下面我们来查看具体代码。这里选取"邻接矩阵"进行说明,对于"邻接表"实现的图在后面的源码中会给出相应的源码。

1.
基本定义


// 边的结构体
private static class EData {
char start; // 边的起点
char end; // 边的终点
int weight; // 边的权重

public EData(char start, char end, int weight) {
this.start = start;
this.end = end;
this.weight = weight;
}
};

EData是邻接矩阵边对应的结构体。


public class MatrixUDG {

private int mEdgNum; // 边的数量
private char[] mVexs; // 顶点集合
private int[][] mMatrix; // 邻接矩阵
private static final int INF = Integer.MAX_VALUE; // 最大值

...
}

MatrixUDG是邻接矩阵对应的结构体。mVexs用于保存顶点,mEdgNum用于保存边数,mMatrix则是用于保存矩阵信息的二维数组。例如,mMatrix[i][j]=1,则表示"顶点i(即mVexs[i])"和"顶点j(即mVexs[j])"是邻接点;mMatrix[i][j]=0,则表示它们不是邻接点。

2.
克鲁斯卡尔算法


/*
* 克鲁斯卡尔(Kruskal)最小生成树
*/
public void kruskal() {
int index = 0; // rets数组的索引
int[] vends = new int[mEdgNum]; // 用于保存"已有最小生成树"中每个顶点在该最小树中的终点。
EData[] rets = new EData[mEdgNum]; // 结果数组,保存kruskal最小生成树的边
EData[] edges; // 图对应的所有边

// 获取"图中所有的边"
edges = getEdges();
// 将边按照"权"的大小进行排序(从小到大)
sortEdges(edges, mEdgNum);

for (int i=0; i<mEdgNum; i++) {
int p1 = getPosition(edges[i].start); // 获取第i条边的"起点"的序号
int p2 = getPosition(edges[i].end); // 获取第i条边的"终点"的序号

int m = getEnd(vends, p1); // 获取p1在"已有的最小生成树"中的终点
int n = getEnd(vends, p2); // 获取p2在"已有的最小生成树"中的终点
// 如果m!=n,意味着"边i"与"已经添加到最小生成树中的顶点"没有形成环路
if (m != n) {
vends[m] = n; // 设置m在"已有的最小生成树"中的终点为n
rets[index++] = edges[i]; // 保存结果
}
}

// 统计并打印"kruskal最小生成树"的信息
int length = 0;
for (int i = 0; i < index; i++)
length += rets[i].weight;
System.out.printf("Kruskal=%d: ", length);
for (int i = 0; i < index; i++)
System.out.printf("(%c,%c) ", rets[i].start, rets[i].end);
System.out.printf("\n");
}

克鲁斯卡尔算法的源码


这里分别给出"邻接矩阵图"和"邻接表图"的克鲁斯卡尔算法源码。

1. 邻接矩阵源码(MatrixUDG.java)

2. 邻接表源码(ListUDG.java)

Kruskal算法(三)之 Java详解,布布扣,bubuko.com

时间: 2024-10-08 08:15:39

Kruskal算法(三)之 Java详解的相关文章

Dijkstra算法(三)之 Java详解

前面分别通过C和C++实现了迪杰斯特拉算法,本文介绍迪杰斯特拉算法的Java实现. 目录 1. 迪杰斯特拉算法介绍 2. 迪杰斯特拉算法图解 3. 迪杰斯特拉算法的代码说明 4. 迪杰斯特拉算法的源码 转载请注明出处:http://www.cnblogs.com/skywang12345/ 更多内容:数据结构与算法系列 目录 迪杰斯特拉算法介绍 迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个节点到其他节点的最短路径. 它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想

Floyd算法(三)之 Java详解

前面分别通过C和C++实现了弗洛伊德算法,本文介绍弗洛伊德算法的Java实现. 目录 1. 弗洛伊德算法介绍 2. 弗洛伊德算法图解 3. 弗洛伊德算法的代码说明 4. 弗洛伊德算法的源码 转载请注明出处:http://www.cnblogs.com/skywang12345/ 更多内容:数据结构与算法系列 目录 弗洛伊德算法介绍 和Dijkstra算法一样,弗洛伊德(Floyd)算法也是一种用于寻找给定的加权图中顶点间最短路径的算法.该算法名称以创始人之一.1978年图灵奖获得者.斯坦福大学计

Prim算法(三)之 Java详解

前面分别通过C和C++实现了普里姆,本文介绍普里姆的Java实现. 目录 1. 普里姆算法介绍 2. 普里姆算法图解 3. 普里姆算法的代码说明 4. 普里姆算法的源码 转载请注明出处:http://www.cnblogs.com/skywang12345/ 更多内容:数据结构与算法系列 目录 普里姆算法介绍 普里姆(Prim)算法,是用来求加权连通图的最小生成树的算法. 基本思想 对于图G而言,V是所有顶点的集合:现在,设置两个新的集合U和T,其中U用于存放G的最小生成树中的顶点,T存放G的最

哈夫曼树(三)之 Java详解

前面分别通过C和C++实现了哈夫曼树,本章给出哈夫曼树的java版本. 目录 1. 哈夫曼树的介绍 2. 哈夫曼树的图文解析 3. 哈夫曼树的基本操作 4. 哈夫曼树的完整源码 转载请注明出处:http://www.cnblogs.com/skywang12345/ 更多内容:数据结构与算法系列 目录 哈夫曼树的介绍 Huffman Tree,中文名是哈夫曼树或霍夫曼树,它是最优二叉树. 定义:给定n个权值作为n个叶子结点,构造一棵二叉树,若树的带权路径长度达到最小,则这棵树被称为哈夫曼树. 这

Kruskal算法(二)之 C++详解

本章是克鲁斯卡尔算法的C++实现. 目录 1. 最小生成树 2. 克鲁斯卡尔算法介绍 3. 克鲁斯卡尔算法图解 4. 克鲁斯卡尔算法分析 5. 克鲁斯卡尔算法的代码说明 6. 克鲁斯卡尔算法的源码 转载请注明出处:http://www.cnblogs.com/skywang12345/ 更多内容:数据结构与算法系列 目录 最小生成树 在含有n个顶点的连通图中选择n-1条边,构成一棵极小连通子图,并使该连通子图中n-1条边上权值之和达到最小,则称其为连通网的最小生成树. 例如,对于如上图G4所示的

邻接表有向图(三)之 Java详解

前面分别介绍了邻接表有向图的C和C++实现,本文通过Java实现邻接表有向图. 目录 1. 邻接表有向图的介绍 2. 邻接表有向图的代码说明 3. 邻接表有向图的完整源码 转载请注明出处:http://www.cnblogs.com/skywang12345/ 更多内容:数据结构与算法系列 目录 邻接表有向图的介绍 邻接表有向图是指通过邻接表表示的有向图. 上面的图G2包含了"A,B,C,D,E,F,G"共7个顶点,而且包含了"<A,B>,<B,C>,

邻接矩阵有向图(三)之 Java详解

前面分别介绍了邻接矩阵有向图的C和C++实现,本文通过Java实现邻接矩阵有向图. 目录 1. 邻接矩阵有向图的介绍 2. 邻接矩阵有向图的代码说明 3. 邻接矩阵有向图的完整源码 转载请注明出处:http://www.cnblogs.com/skywang12345/ 更多内容:数据结构与算法系列 目录 邻接矩阵有向图的介绍 邻接矩阵有向图是指通过邻接矩阵表示的有向图. 上面的图G2包含了"A,B,C,D,E,F,G"共7个顶点,而且包含了"<A,B>,<

邻接表无向图(三)之 Java详解

前面分别介绍了邻接表无向图的C和C++实现,本文通过Java实现邻接表无向图. 目录 1. 邻接表无向图的介绍 2. 邻接表无向图的代码说明 3. 邻接表无向图的完整源码 转载请注明出处:http://www.cnblogs.com/skywang12345/ 更多内容:数据结构与算法系列 目录 邻接表无向图的介绍 邻接表无向图是指通过邻接表表示的无向图. 上面的图G1包含了"A,B,C,D,E,F,G"共7个顶点,而且包含了"(A,C),(A,D),(A,F),(B,C),

查看登陆系统用户的信息的三种方法详解

查看登陆系统用户的信息的三种方法详解 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.who这个命令显示可以谁在登陆,但是这个有很多的花式玩法,这个命令超简单 语法:who [OPTION]... [ FILE | ARG1 ARG2 ] 1.参数:-u,显示闲置时间,若该用户在前一分钟之内有进行任何动作,将标示成"."号,如果该用户已超过24小时没有任何动作,则标示出"old"字符串. 例如: 2.参数:-m,此参数的效果和指定"a